Math, asked by Adipathakk, 1 month ago

34. A solid is in the form of a cylinder with hemispherical ends on both sides. The height and the
diameter of cylinder are 10 cm and 7 cm respectively. Find the volume of the solid.​

Answers

Answered by Anonymous
315

Answer:

564.8 \:  {cm}^{3}

Step-by-step explanation:

\huge\underline\mathtt{\red{Let's \ do \ it !!}}

Given:-

\implies A cylinder with hemispherical ends on both the sides.

\implies Diameter of the cylinder = Diameter of both the hemispheres, d = 7 cm

\implies Radius, r = \frac{7}{2} cm.

\implies Height of the cylinder, h = 10cm

\therefore Required volume of the solid is Volume of cylinder + 2(Volume of hemisphere)

Volume of cylinder:-

\hookrightarrow \Large\pi {r}^{2} h

\implies Volume = \frac{22}{7} × {\frac{7}{2}^{2}} × 10

\implies  \frac{22}{7}  \times  \frac{7}{2}  \times  \frac{7}{2}  \times 10

\implies 11 × 7 × 5

\implies 385  {cm}^{3}

Volume of hemisphere:-

\hookrightarrow \Large \frac{2}{3} \pi {r}^{3}

\implies vol. =  \frac{2}{3}  \times  \frac{22}{7}  \times  {( \frac{7}{2}) }^{3}

\implies   \frac{2}{3}  \times  \frac{22}{7}  \times  \frac{343}{8}

\implies    \frac{49 \times 11}{6}  = 89.9 \:  {cm}^{3} (approx.)

Now,

Required volume:-

\implies Volume of cylinder + 2(Volume of hemisphere)

\implies 385 + 2(89.9)

\implies 385 + 179.8

\implies 564.8 \:  {cm}^{3}

Answered by Anonymous
21

Answer:

tep-by-step explanation:

\huge\underline\mathtt{\red{Let's \ do \ it !!}}Let′s do it!!

Given:-

\implies⟹ A cylinder with hemispherical ends on both the sides.

\implies⟹ Diameter of the cylinder = Diameter of both the hemispheres, d = 7 cm

\implies⟹ Radius, r = \frac{7}{2}27 cm.

\implies⟹ Height of the cylinder, h = 10cm

\therefore∴ Required volume of the solid is Volume of cylinder + 2(Volume of hemisphere)

Volume of cylinder:-

\hookrightarrow↪ \Large\pi {r}^{2} hπr2h

\implies⟹ Volume = \frac{22}{7}722 × {\frac{7}{2}^{2}}272 × 10

\implies⟹ \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times 10722×27×27×10

\implies⟹ 11 × 7 × 5

\implies⟹ 385 {cm}^{3}cm3

Volume of hemisphere:-

\hookrightarrow↪ \Large \frac{2}{3} \pi {r}^{3}32πr3

\implies⟹ vol. = \frac{2}{3} \times \frac{22}{7} \times {( \frac{7}{2}) }^{3}vol.=32×722×(27)3

\implies⟹ \frac{2}{3} \times \frac{22}{7} \times \frac{343}{8}32×722×8343

\implies⟹ \frac{49 \times 11}{6} = 89.9 \: {cm}^{3} (approx.)649×11=89.9cm3(approx.)

Now,

Required volume:-

\implies⟹ Volume of cylinder + 2(Volume of hemisphere)

\implies⟹ 385 + 2(89.9)

\implies⟹ 385 + 179.8

\implies⟹ 564.8 \: {cm}^{3}564.8cm3

hope it helps uh

Similar questions