Math, asked by Kevinpanjwani786, 11 months ago

34. Calculate the missing frequency from the following distribution, it being given that the median of the
distribution is 24.

age in years. no. of.persons.
0-10. 5
10-20. 25
20-30. ?
30-40. 18
40-50. 7​

Answers

Answered by Alcaa
0

Answer:

Missing frequency = 25

Step-by-step explanation:

We are given following frequency distribution below;

   Age in years        No. of persons (f)          Cumulative frequency (cf)

        0 - 10                          5                                               5

       10 - 20                        25                                             30

       20 - 30                         x                                             30 + x

       30 - 40                        18                                            48 + x

       40 - 50                         7                                            55 + x    

                                     ∑f = 55 + x  

We are given the median of the  distribution is 24. Since 24 lies in the interval of 20 - 30 so the median class is 20 - 30.

Median formula = x_L + \frac{\frac{N}{2} - cf}{f_m} *c

where, x_L = lower limit of median class = 20

             N =  ∑f = 55 + x    

             f_m = frequency of median class = x

             cf = cumulative frequency of just above the median class = 30

              c = width of class interval = 10

So,  24 = 20 + \frac{\frac{55+x}{2} - 30}{x} *10

       24 - 20 = \frac{\frac{55+x}{2} - 30}{x} *10

             4 = \frac{\frac{55+x}{2} - 30}{x} *10

           0.4*x = \frac{55+x-60}{2}

            0.4*x = (x-5)/2

            0.4*x*2 = x - 5

              x - 0.8*x = 5

                 x = 5/0.2 = 25

Therefore, value of missing frequency, x = 25 .

Answered by nm097690
0

Answer:

Missing frequency = 25

Step-by-step explanation:

We are given following frequency distribution below;

Age in years No. of persons (f) Cumulative frequency (cf)

0 - 10 5 5

10 - 20 25 30

20 - 30 x 30 + x

30 - 40 18 48 + x

40 - 50 7 55 + x

∑f = 55 + x

We are given the median of the distribution is 24. Since 24 lies in the interval of 20 - 30 so the median class is 20 - 30.

Median formula = x_L + \frac{\frac{N}{2} - cf}{f_m} *cx

L

+

f

m

2

N

−cf

∗c

where, x_Lx

L

= lower limit of median class = 20

N = ∑f = 55 + x

f_mf

m

= frequency of median class = x

cf = cumulative frequency of just above the median class = 30

c = width of class interval = 10

So, 24 = 20 + \frac{\frac{55+x}{2} - 30}{x} *1020+

x

2

55+x

−30

∗10

24 - 20 = \frac{\frac{55+x}{2} - 30}{x} *10

x

2

55+x

−30

∗10

4 = \frac{\frac{55+x}{2} - 30}{x} *10

x

2

55+x

−30

∗10

0.4*x = \frac{55+x-60}{2}

2

55+x−60

0.4*x = (x-5)/2

0.4*x*2 = x - 5

x - 0.8*x = 5

x = 5/0.2 = 25

Similar questions