Math, asked by skabdulfarvej, 2 months ago

34. Find the sum of first 50 terms of an AP,
whose second and third terms are 14 and
18 respectively.​

Answers

Answered by XxBeingLegendxX
146

Answer:

ANSWER REFER TO THE ATTACHMENT✯

(◕ᴗ◕✿)

Attachments:
Answered by MostlyMad
83

\mathfrak{{\pmb{{\underline{Given}}:}}}

  • The second and third terms are 14 and 18 respectively (i.e., \sf{a_{2}=14~,~~a_{3}=18})

\mathfrak{{\pmb{{\underline{To~find}}:}}}

  • The sum of first 50 terms of the AP

\mathfrak{{\pmb{{\underline{Solution}}:}}}

\sf{{\pmb{{\underline{Given}}:}}}

  • \sf{a_{2}=14}
  • \sf{a_{3}=18}

\sf{~~~~ \therefore d=a_{3}-a_{2}=18-14={\pmb{4}}}

\sf{~~~~~~~~~~ a_{2}=a+d}

\sf\implies{14=a+4}

\sf\implies{a=14-4}

\sf\implies{ {\blue{\underline{\boxed{\sf{\pmb{a=10}}}}}}}

\sf{~~~~ \therefore a={\pmb{10}}}

  • Sum of first 50 terms

\sf{~~~~ \therefore n={\pmb{50}}}

\sf\implies{S_{n}={\dfrac{n}{2}}[2a+(n-1)d]}

\sf\implies{S_{50}={\dfrac{50}{2}}[2(10)+(50-1)4]}

\sf\implies{S_{50}=25[20+(49)4]}

\sf\implies{S_{50}=25(20+196)}

\sf\implies{S_{50}=25(216)}

\sf\implies{ {\blue{\underline{\boxed{\sf{\pmb{S_{50}=5,400}}}}}}}

\therefore\mathfrak{{\pmb{{\underline{Required~answer}}:}}}

Sum of first 50 terms of an AP is 5,400

Similar questions