34. If x= cosec A+ cos A and y=cosec A-cos A then prove that (2/x+y) square+(x-y/2)square - 1 = 0
Answers
Answered by
8
Answer:
Step-by-step explanation:
SOLVING LHS
[2/(cosecA+cosA+cosecA-cosA)]²+[cosecA+cosA-(cosecA-cosA)/2]²-1
eliminate values of cosA and cosec A from the above given eqn.
[2/2cosecA]²+[2cosA/2]²-1
eliminate value of 2 from above eqn
[1/cosecA]²+[cosA]²-1 [1/cosecA=sinA]
transfer value of cosecA to numerator
sin²A+cos²A-1 [sin²A+cos²A=1]
put trignometric identity
1-1=0
∴LHS=RHS
hence proved
Similar questions