34. Prove that
cot theta/1+tan theta= cot theta - 1/ 2-sec²theta
Answers
Answered by
0
Step-by-step explanation:
Answer and Explanation:
To show : \frac{\cot\theta}{1+\tan\theta}=\frac{\cot\theta-1}{2-\sec^2\theta}
1+tanθ
cotθ
=
2−sec
2
θ
cotθ−1
Solution :
Taking LHS,
\frac{\cot\theta}{1+\tan\theta}
1+tanθ
cotθ
Rationalize,
=\frac{\cot\theta}{1+\tan\theta}\times\frac{1-\tan\theta}{1-\tan\theta}=
1+tanθ
cotθ
×
1−tanθ
1−tanθ
=\frac{\cot\theta-\cot\theta\tan\theta}{1^2-\tan^2\theta}=
1
2
−tan
2
θ
cotθ−cotθtanθ
=\frac{\cot\theta-1}{1-(\sec^2\theta-1)}=
1−(sec
2
θ−1)
cotθ−1
=\frac{\cot\theta-1}{1-\sec^2\theta+1}=
1−sec
2
θ+1
cotθ−1
=\frac{\cot\theta-1}{2-\sec^2\theta}=
2−sec
2
θ
cotθ−1
=RHS
So, LHS=RHS
Similar questions