Math, asked by ananyaloyola, 6 months ago

34 The midpoint P of the line segment joining the points A(-10, 4) and
B(-2, 0) lies on the line segment joining the points C(-9, 4) and
D(-4, y). Find the ratio in which P divides CD. Also, find the value of y.
[CBSE 2014]​

Answers

Answered by VishnuPriya2801
28

Answer:-

The midpoint P of a line segment joining the points A( - 10 , 4) and B( - 2 , 0) lies on the line segment joining the C( - 9 , 4) and D( - 4 , y).

We know that,

Co - ordinates of Mid Point of a line segment joining the points (x₁ , y₁) , (x₂ , y₂) are :

 \: \implies \sf \large{ (x \: , \: y) =  \bigg( \dfrac{x_1 + x_2}{2}  \:  \:  ,\:  \:  \dfrac{y_1 + y_2}{2}  \bigg)} \\

Let,

  • x₁ = - 10
  • y₁ = 4
  • x₂ = - 2
  • y₂ = 0

So,

 \: \implies \sf \: P(x \: , \: y) =  \bigg( \dfrac{ - 10 - 2}{2}  \:  \: , \:  \:  \dfrac{4 + 0}{2}  \bigg) \\  \\ \implies \sf \: p(x \:,  \: y) =  \bigg( \dfrac{ - 12}{2}  \:  \: , \:  \:  \dfrac{4 }{2}  \bigg) \\  \\ \implies \boxed{ \sf \: p(x \:,  \: y) = ( - 6 \:  ,\: 2)}

Now,

P divides CD in a certain ratio , so we have to find the ratio and the value of y.

Using section formula;

The co - ordinates of a point which divides the line segment joining the points (x₁ , y₁) , (x₂ , y₂) in the ratio m : n are :

 \implies \boxed{ \sf \: (x \:,  \: y) =  \bigg( \dfrac{mx_2 + nx_1}{m + n}  \:  \: , \:  \:  \dfrac{my_2 + ny_1}{m + n}  \bigg)} \\

Let,

  • x = - 6

  • y = 2

  • x₁ = - 9

  • x₂ = - 4

  • y₁ = 4

  • y₂ = y

  • m = m

  • n = n

So,

 \: \implies  \sf \: ( - 6 \: , \: 2) =  \bigg( \dfrac{(m)( - 4) + (n)( - 9) }{m + n}  \:  \:  ,\:  \:  \dfrac{(m)(y)+ (n)(4)}{m + n}  \bigg) \\  \\ \implies  \sf \: ( - 6 \: , \: 2) =  \bigg( \dfrac{ - 4m - 9n}{m + n}  \:  \: , \:  \:  \dfrac{ym + 4n}{m + n}  \bigg)   \\  \\ \implies  \sf \: - 6 = \dfrac{ - 4m - 9n}{m + n} \\  \\ \implies  \sf \:  - 6(m + n) =  - 4m - 9n \\  \\ \implies  \sf \:  - 6m - 6n + 4m =  - 9n \\  \\ \implies  \sf - 2m =  - 9n + 6n \\  \\ \implies  \sf - 2m =  - 3n \\  \\ \implies  \sf \frac{ - 2 \times m}{ - 3 \times n}  = 1 \\  \\ \implies  \sf \frac{m}{n}  =  \frac{3}{2}  \\  \\ \implies \boxed{  \sf \: m : n = 3 : 2}

Similarly,

 \implies \sf \: 2 = \dfrac{ym + 4n}{m + n}

Substitute the values of m , n here.

 \implies \sf \: 2(3 + 2) = y(3) + 4(2) \\  \\\implies \sf 10 - 8 = 3y \\  \\ \implies \boxed{ \sf \:  \frac{2}{3}  = y}

  • P divides CD in the ratio 3 : 2.
  • y = 2/3.
Similar questions