Math, asked by pathakananandkumar66, 3 months ago

??
345+124
5/512
-
 find \: the \: value \: of  \: 3 \sqrt{512 }   + 3 \sqrt{343}  + 3 \sqrt{729 }

Answers

Answered by Sandradutta05
1

8 + 7 +9 = 24

Cube root of 512 = 8

Cube root of 343 = 7

Cube root of 729 = 9

Hope it helped you : )

Answered by junnellasampson
0

ANSWER

48\sqrt{2} + 21\sqrt{7} + 81

Step-by-step explanation:

3\sqrt{512} + 3\sqrt{343} + 3\sqrt{729}

Factor 512  = 16^2 * 2. Rewrite the square root of the product \sqrt{16^2 * 2} as the product of square roots \sqrt{16^2 } \sqrt{2\\}. Take the square root of 16^2.

3 *16\sqrt{2} + 3\sqrt{343} + 3\sqrt{729}

Multiply 3 and 16 to get 48

48\sqrt{2} + 3\sqrt{343} + 3\sqrt{729}

Factor 343 = 7^2 * 7. Rewrite the  square root of the product \sqrt{7^2 * 7} as the product of square roots  \sqrt{7^2}\sqrt{7}. Take the square root of 7^2.

48\sqrt{2} + 21 + 3 * 7\sqrt{7} + 3\sqrt{729}

Multiply 3 and 7 to get 21.

Calculate the square root of 729 and get 27.

42\sqrt{2} + 21\sqrt{7\\} + 3* 27

Multiply 3 and 27  to get 81.

48\sqrt{2} + 21\sqrt{7} + 81

Similar questions