Physics, asked by rasgulla60, 10 months ago

35. A ball is dropped from the top of a building 490 m
high. How long will it take to reach the ground ? What
will be its velocity when it strikes the ground ?​

Answers

Answered by kmina69
1

Answer:

use newton's three equation.

Explanation:

t aayega 10 sec dusri equation se and velocity 1st equation se 98 m per sec

Answered by amritanshu6563
0

\huge{\red{\bold{\underline{\underline{Answer:}}}}}

\green{\bold{\underline{\underline{Time=10 s}}}}

\green{\bold{\underline{\underline{Final\: Velocity=9.81 m/s}}}}

\huge{\red{\bold{\underline{\underline{Solution:}}}}}

Given \\ h \:  =  \: 490 \: m \\ u \:  =  \: 0 \: m {s}^{ - 1}  \\ g \:  =  \: 9.81 \: m {s}^{ - 2} \\

Now \: by \: using \: height \: velocity \: equation:- \\ h \:  =  \: ut \:  +  \:  \frac{1}{2} \: g {t}^{2}

where \: u \:  =  \: 0 \\ Therefore, \\ we \: use \:  \\ h \:  =  \:  \frac{1}{2}  \: g {t}^{2}

Putting \: the \: given \: values \: into \: equation

 =  >  \: 490 =  \:  \frac{1}{2}  \times 9.81  \: {t}^{2}

 =  >  \:  {t}^{2}  \:  =  \frac{490}{4.9}  = 100

 =  >  \: t \:  =  \sqrt{100}  = 10

Hence, \: t \:  = 10 \: s

Now \\ v \:  =  \: u + gt \\  =  > 0 + 9.81 \times 10  = 9.81 \: m {s}^{ - 1}

Similar questions