Math, asked by hetvigoplani, 3 months ago

(35) Cards are numbered 101 to 200 A card is drawn. Find the probability
of getting (a) a perfect square (b) number divisible by 7​

Answers

Answered by ItzBrainlyBeast
43

\LARGE\textsf{\underline\textcolor{aqua}{↭ SoLuTioN :-}}

\large\textsf{                                                               }

↦ Let S be the Sample Space of cards numbered from 101 to 200 .

n ( S ) = 101

__________________________________________________________

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\underline{\large\textsf{Even A :- Getting a perfect square}}

\large\textsf{                                                               }

∴ A = { 121 , 144 , 169 , 196 }

n ( A ) = 4

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{ P ( A )=$\cfrac{\large\textsf{n ( A )}}{\large\textsf{n ( S )}}$}

\qquad\tt{:}\longrightarrow\large\textsf{ = $\cfrac{\large\textsf{4}}{\large\textsf{101}}$}

\qquad\tt{:}\longrightarrow\boxed{\large\textsf\textcolor{red}{ ∴ P ( A ) =$\cfrac{\large\textsf{4}}{\large\textsf{101}}$}}

__________________________________________________________

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\underline{\large\textsf{Even B :- Number divisible by 7}}

\large\textsf{                                                               }

\large\textsf{                                              }∴ B = { 105 , 112 , 119 , 126 , 133 , 140 , 147 , 154 , 161 , 168 , 175 , 182 , 189 , 196 }

n ( B ) = 14

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{P ( B ) =$\cfrac{\large\textsf{n ( B )}}{\large\textsf{n ( S )}}$}

\qquad\tt{:}\longrightarrow\large\textsf{ =$\cfrac{\large\textsf{14}}{\large\textsf{101}}$}

\qquad\tt{:}\longrightarrow\boxed{\large\textsf\textcolor{red}{ ∴ P ( B )=$\cfrac{\large\textsf{14}}{\large\textsf{101}}$}}

\large\textsf{                                                               }

__________________________________________________________

Similar questions