Math, asked by tandalekartik06, 2 months ago

35. Find the mean of the following data:
Class
200 - 299 300 - 399 400 - 499 500 - 599 600 - 699 700 - 799 800 - 899
Frequency
3
61
118
139
126
151
2​

Answers

Answered by farhaanaarif84
16

Answer:

Here, the class- intervals are formed by exclusive method. If we make the series an inclusive one the mid-values remain same. So, there is no need to convert the series into an inclusive form.

Let the assumed mean be A= 749.5 and h= 100.

Calculation of Mean

Life time (in hrs): Frequency

f

i

Mid-Values

x

i

d

i

=x

i

−A=x

i

−749.5 u

i

=

h

x

i

−A

u

i

=

100

x

i

−749.5

f

i

u

i

300-399 14 349.5 -400 -4 -56

400-499 46 449.5 -300 -3 -138

500-599 58 549.5 -200 -2 -116

600-699 76 649.5 -100 -1 -76

700-799 68 749.5 0 0 0

800-899 62 849.5 100 1 62

900-999 48 949.5 200 2 96

1000-1099 22 1049.5 300 3 66

1100-1199 6 1149.5 400 4 24

N=∑f

i

=400 ∑f

i

u

i

=-138

We have,

N= 400, A= 749.5, h= 100 and ∑f

i

u

i

=−138

X

=A+h[

N

1

∑f

i

u

i

]

X

=749.5+100(

400

−138

)=749.5−34.5=715.

Hence, the average life time of a tube is 715 hours.

Answered by anjali13lm
12

Answer:

The mean of the data is 580.33.

Step-by-step explanation:

Data given,

Class                     Frequency

200 - 299                  3

300 - 399                  61

400 - 499                 118

500 - 599                 139

600 - 699                 126

700 - 799                 151

800 - 899                   2

To find: The mean of the data =?

  • Mean is defined as the sum of the observations divided by the total number of observations.
  • Mean = \frac{\sum x_{i}f_{i}  }{\sum f_{i} }

Here,

  • x_{i} = The midpoint of the class
  • f_{i} = The frequency

For this, we have to create a table with the midpoint and the product of the frequency and midpoint.

Class             Frequency(f_{i})       Midpoint (x_{i})         x_{i}f_{i}

200 - 299              3                        249.5                    748.5

300 - 399              61                       349.5                   21319.5

400 - 499            118                       449.5                    53041  

500 - 599             139                       549.5                  76380.5

600 - 699             126                       649.5                   81837

700 - 799              151                       749.5                 113174.5

800 - 899               2                         849.5                   1699

Total                   600                                              348200

Now, after putting the values of x_{i}f_{i} and f_{i} in equation (1), we get:

  • Mean = \frac{\sum x_{i}f_{i}  }{\sum f_{i} }
  • Mean = \frac{348200}{600}
  • Mean = 580.33.

Hence, the mean of the data is 580.33.

Similar questions