Math, asked by yashwanth200369, 1 year ago

35. If the roots of the Quadratic equation (a-b) x² + (b-c) x + (c-a) = 0 are equal, then
prove that 2a=b+c.
OR

Answers

Answered by kash01042001
1

Answer:

Step-by-step explanation:

The question must be, if roots of equation (a-b)x2+(b-c)x+(c-a)=0 are equal , prove that b+c = 2a.

Using Discriminant,

D = B2-4AC as compared with the general quadratic equation Ax2+Bx+C=0

so, A = a-b  

B = b-c

C = c-a

For roots to be equal, D=0

(b-c)2 - 4(a-b)(c-a) =0

b2+c2-2bc -4(ac-a2-bc+ab) =0

b2+c2-2bc -4ac+4a2+4bc-4ab=0

4a2+b2+c2+2bc-4ab-4ac=0

(2a-b-c)2=0

i.e. 2a-b-c =0

2a= b+c

Answered by shadowsabers03
2

p(x) = (a-b)x^2+(b-c)x+(c-a)=0 \\ \\ \\ A=(a-b) \\ \\ B=(b-c) \\ \\ C=(c-a)

Roots are equal. So discriminant is zero.  

Therefore,  

 

B^2-4AC = 0 \\ \\ (b-c)^2-(4(a-b)(c-a)) = 0 \\ \\ (b^2-2bc+c^2)-(4(ac-a^2-bc+ab)) = 0 \\ \\ (b^2-2bc+c^2)-(4(ab-bc+ac-a^2)) = 0 \\ \\ (b^2-2bc+c^2)-(4ab-4bc+4ac-4a^2)=0 \\ \\ b^2-2bc+c^2-4ab+4bc-4ac+4a^2=0 \\ \\ 4a^2+b^2+c^2-4ab+2bc-4ac=0 \\ \\ (2a-b-c)^2=0 \\ \\ 2a-b-c=0 \\ \\ 2a=b+c

 

Hence proved!  

Similar questions