Math, asked by chethangovindaraju, 10 months ago

35. in an A.P if the sum of the third term and seventh term is 6 and their product is 8, then find the
sum of first 16 terms.

Answers

Answered by ShírIey
58

AnswEr:

We know the Formula:

\dag\large\boxed{\sf{\red{a_n = a + (n - 1)d}}}

So, 7th term = \sf\;a_7 = a + 6d

And, 3rd term =  \sf\;a_3 = a + 2d

According to Question:

Sum of the Third and Seventh Term of the AP.

\dag\sf\; a_3 + a_7 = 6

:\implies\sf\; a + 2d + a + 6d = 6

:\implies\sf\; 2a + 8d = 6

:\implies\sf\; 2(a + 4d) = 6

:\implies\sf\; a + 4d = \dfrac{6}{2}

:\implies\sf\; a + 4d = 3

:\implies\sf\;a = 3 - 4d __eq(1)

Now, Product of Third and Seventh Term

\dag\sf\; a_3 \times\;7 = 8

:\implies\sf\; (a + 2d) (a + 6d) = 8

:\implies\sf\; a(a + 6d) + 2d (a + 6d) = 8

:\implies\sf\; (a + 2d) (a + 6d) = 8 _eq(1)

\rule{150}3

\dag From Equation (1)

:\implies\sf\; (3d - 2d) (a + 6d) = 8

:\implies\sf\; 9 - 4d^2 = 8

:\implies\sf\; d = \dfrac{1}{2}

\rule{150}3

\dag \sf\; If \; d = \dfrac{ -1}{2}

:\implies\sf\; S_16 = \dfrac{16}{2}(2 + \frac{15}{2})

:\implies\sf\; S_16 =8 \times\; \dfrac{19}{2}

:\implies\large{\underline{\boxed{\sf{\blue{x = 76}}}}}

\dag\sf\;If \; d =\dfrac{1}{2}

:\implies\sf\;S_16 = \dfrac{16}{2}( 10 - \frac{15}{2})

:\implies\sf\;S_16 = 8 \times\; \dfrac{5}{2}

:\implies\large{\underline{\boxed{\sf{\blue{x = 20}}}}}

Therefore, If \sf\; d = \dfrac{-1}{\;2} the sum of the first sixteen terms of the AP is 76.

If If  \sf\;d = \dfrac{ 1}{2} the sum of the first sixteen terms of the AP is 20.

\rule{150}3

Similar questions