Math, asked by choudharyshreya385, 6 months ago

35. Prove that :
cosec A +1
(sec A + tan A)
cosec A-1​

Attachments:

Answers

Answered by Dd19
1

Step-by-step explanation:

 \frac{cosec \: a+ 1}{cosec \: a - 1}  =  \frac{cosec \: a + 1}{cosec \: a - 1}  \times  \frac{cosec \: a + 1}{cosec \: a  + 1}

  =  \frac{ {(cosec \: a + 1)}^{2} }{ {cosec }^{2} a - 1}

 =  \frac{ {(cosec \: a \: + 1)}^{2} }{ {cot}^{2} a}

 =   { (\frac{cosec \: a + 1}{cot \: a} )}^{2}

 =  { (\frac{cosec \: a}{cot \: a}  +  \frac{1}{cot \: a} )}^{2}

 = { (\frac{ \frac{1}{sin \: a} }{ \frac{cos \: a}{sin \: a} } + tan \: a) }^{2}

 =  { (\frac{1}{cos \: a}  + tan \: a)}^{2}

 =  {(sec \: a \:  +  \: tan \: a)}^{2}

Similar questions