Physics, asked by vaidiksharma0004, 11 months ago

35. Show that vectors A = 2i - 3j- k and B = 6i+ 9j + 3k are parallel.​

Answers

Answered by Anonymous
11

Solution :

 \sf{a = 2 \hat{i} - 3 \hat{j} -  \hat{k}} \\  \\  \longrightarrow \:  \sf{ |a|  =  \sqrt{(2) {}^{2} + ( - 3) {}^{2}  + ( - 1) {}^{2} } } \\  \\  \longrightarrow \:  \sf{ |a|  =  \sqrt{14}  \:}

Also,

 \sf{b = 6 \hat{i} + 9 \hat{j} + 3 \hat{k}} \\  \\  \longrightarrow \:  \sf{ |b|  =  \sqrt{ {6}^{2} +  {9}^{2}   +  {3}^{2} } } \\  \\  \longrightarrow \:  \sf{ |b| = 3 \sqrt{14}  }

DoT ProducT

 \sf{ \hat{ {i}}^{2}  =  \hat{{j}^{2}} =  \hat{k}^{2}  = 0} \\   \sf{\hat{i} \hat{j} =  \hat{j} \hat{k} =  \hat{i} \hat{k} = 1}

 \sf{a \times b =  |a|  |b|  \cos( \alpha ) } \\  \\  \implies \:  \sf{12 - 27 - 3 =  \sqrt{14} \times 3 \sqrt{14} \times  \cos( \alpha )  } \\  \\  \implies \:  \sf{ 0  = 3( \sqrt{14}) {}^{2} \times  \cos( \alpha )   } \\  \\  \implies  \:  \sf{ \cos( \alpha )  = 0 }

  • For two vectors to be parallel,the angle in between them should be 0°

Thus,the given vectors are parallel to eachother

Answered by Shubhendu8898
11

Question:- Show that vectors A = 2i -3j -k and B = -6i + 9j + 3k are parallel

Explanation:

Given,

A = 2i - 3j - k

B = -6j + 9j + 3k

Two vectors are said to be parallel if there cross product is null vector.

Thus we have to show that,

\vec{A}\times\vec{B}=\vec{0}

Now consider,

\vec{A}\times\vec{B}=(2\hat{i}-3\hat{j}-\hat{k})\times(-6\hat{i}+9\hat{j}+3\hat{k})

\vec{A}\times\vec{B}={\left|\begin{array}{ccc}{\hat{i}}&{\hat{j}}&{\hat{k}}\\2&{-3}&{-1}\\{-6}&9&3\end{array}\right|}

\vec{A}\times\vec{B}=(-9+9)\hat{i}-(6-6)\hat{j}+(18-18)\hat{k}

\vec{A}\times\vec{B}=0\hat{i}-0\hat{j}+0\hat{k}

\vec{A}\times\vec{B}=\vec{0}

Thus vector A and vector B are parallel.

Similar questions