350! number of zero
with methods
Answers
Answered by
2
Answer:
Hence number of zeros will be 15.
5: Find the number of zeros in 350!
a) 84
b) 85
c) 86
d) 87
Ans: c
Solution:
Maximum power of 5 in 350!
= 70 + 14 + 2
= 86
$ \displaystyle \begin{array}{l}\left[ \frac{350}{5} \right]+\left[ \frac{350}{{{5}^{2}}} \right]+\left[ \frac{350}{{{5}^{3}}} \right]+\left[ \frac{350}{{{5}^{4}}} \right]+…..\\\begin{array}{*{35}{l}}
=\text{ }70\text{ }+\text{ }14\text{ }+\text{ }2 \\
=\text{ }86 \\
\end{array}\end{array}$
So the number of zeros in the end of the 350! are 86.
Similar questions