Physics, asked by sannagehi143, 5 months ago

36. A force F = (31 +4j+5k) N produces
an acceleration of
1.414 m/s2 in a body. What is the mass
of the body?
(a) 3 kg
(b) 4 kg
(c) 5 kg
(d) 10 kg​

Answers

Answered by Anonymous
17

\huge{\mathbb{\red{ANSWER:-}}}

Given :-

For a body -

\sf{\vec{F} = (3i + 4j + 5k) \: N}

\sf{a = 1.414 \: m/s^{2}}

To Find :-

\sf{mass \: of \: the \: body(m) = ?}

Using Formula :-

From second law of Newton's motion-

\sf{Force = mass\times acceleration}

Explanation :-

\sf{| \vec{F} | =\sqrt{3^{2} + 4^{2} + 5^{2}}}

\sf{F =\sqrt{9 + 16 + 25}}

\sf{F =\sqrt{50}}

\sf{F =5\sqrt{2} \: N}

\sf{From \: Newton's \: Second \: law-}

\sf{F = ma}

\sf{m =\dfrac{F}{a}}

\sf{m =\dfrac{5\sqrt{2}}{1.414}}

We know that :-

\sf{1.414 =\sqrt{2}}

\sf{So \: ,}

\sf{m =\dfrac{5\sqrt{2}}{\sqrt{2}}}

\sf{m = 5 \: kg}

As We got :-

\sf{mass \: of \: the \: body \: is \: 5 \: kg.}

Answered by amikkr
3

The correct option is 5kg, so option (c) is correct.

Given: F = (3i+4j+5k)

           acceleration = 1.414ms⁻²

To find: mass of the body

Solution: Force = 3i+4j+5k

                           =\sqrt{3^2+ 4^2 + 5^2

                            = \sqrt{9+16+25

                           = \sqrt{50

                          = 5\sqrt{2 N

Force = mass× acceleration

5√2 = √2× mass

5 = mass

5kg = mass

Therefore, the correct answer is 5kg and the correct option is (c)

Similar questions