Math, asked by usharani1987p, 9 months ago

37. AABC is an isosceles triangle in which AB = AC, side BA is produced to D such that
AD = AB. Show that ZBCD = 90°.

Answers

Answered by Shailesh183816
10

\bf\large\underline\green{Solution:-}

➤ AB=AC         (Given)

It means that ∠DBC=∠ACB           (In triangle, angles opposite to equal sides are equal)     

Let ∠DBC=∠ACB=x         .......(1)

AC=AD          (Given)

It means that ∠ACD=∠BDC         (In triangle, angles opposite to equal sides are equal)     

Let ∠ACD=∠BDC=y           ......(2)

In ∆BDC, we have

∠BDC+∠BCD+∠DBC=180°     (Angle sum property of triangle)

⇒∠BDC+∠ACB+∠ACD+∠DBC=180°

Putting (1) and (2) in the above equation, we get

y+x+y+x=180°

⇒2x+2y=180°

⇒2(x+y)=180°

⇒(x+y)=180/2=90°

Therefore, ∠BCD=90°

==========================================

Answered by XxMissPaglixX
8

Hope it helps you

♡Thank you♡

Attachments:
Similar questions