Math, asked by omagrawal2792, 1 day ago

375375÷455+13.3%of 8600-15.7%of9240=40% of x. Find x =?

Answers

Answered by mathdude500
0

Answer:

 \:\boxed{\bf \:  x = 1295.30 \: } \\

Step-by-step explanation:

Given expression is

\sf \: 375375 \div 455+13.3\% \: of \:  8600-15.7\% \: of \: 9240=40\% \:  of \:  x \\

can be rewritten as

\sf \: 375375  \times \dfrac{1}{455} +\dfrac{13.3}{100} \times  8600-\dfrac{15.7}{100}  \times 9240=\dfrac{40}{100} \times  x \\

\sf \: 825 +13.3 \times  86-\dfrac{157}{100}  \times 924=\dfrac{40}{100} \times  x \\

\sf \: 825 +1143.8-\dfrac{145068}{100}  =\dfrac{2}{5} \times  x \\

\sf \: 1968.8-1450.68 =\dfrac{2}{5} \times  x \\

\sf \: 518.12 =\dfrac{2}{5} \times  x \\

\sf \:x =  518.12 \times \dfrac{5}{2} \\

\sf \:x =  259.06 \times 5 \\

\implies\sf \: x = 1295.30 \\

Hence,

\implies\sf \:\boxed{\bf \:  x = 1295.30 \: } \\

\rule{190pt}{2pt}

Additional Information

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{{More \: identities}}}} \\ \\ \bigstar \: \bf{ {(x + y)}^{2} =  {x}^{2}  + 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {(x - y)}^{2}  =  {x}^{2} - 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {x}^{2} -  {y}^{2} = (x + y)(x - y)}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  -  {(x - y)}^{2}  = 4xy}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  +  {(x - y)}^{2}  = 2( {x}^{2}  +  {y}^{2})}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x + y)}\:\\ \\ \bigstar \: \bf{ {(x - y)}^{3} =  {x}^{3} -  {y}^{3} - 3xy(x - y) }\:\\ \\ \bigstar \: \bf{ {x}^{3}  +  {y}^{3} = (x + y)( {x}^{2}  - xy +  {y}^{2} )}\: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions