Math, asked by vidyardhi, 8 months ago

సంఖువు భూ వైశాల్యం 38.5 చ.సెం.మీ. ఘనపరిమాణం 77 ఘ. సెం.మీ. అయిన దాని యొక్క ఎత్తును
కనుగొనుము.
పారం 7 మీటర్లు అయిన దాని ఎత్తును కనుగొనుము.​

Answers

Answered by bishnumohantypuri2
0

స్థూపం అనగా గణితంలో వచ్చే స్తంబం వంటి ఆకారం. ఇది త్రిమితీయ ఘనాకారం. ఇది పైన, క్రింది భాగాలు వృత్తాకార తలాలు గల డబ్బా వంటి నిర్మాణం[1]. ఒక చతురస్రం భుజాన్ని, దీర్ఘచతురస్ర పొడవు లేదా వెడల్పులను అక్షంగా తీసుకొని వృత్తాకారంగా చుట్టడం వల్ల స్థూపాకారం తయారుచేయవచ్చు. ఈ స్థూపాలను స్తంబాలని కూడా వ్యవహరిస్తారు. మనం రేఖాఖండాలు గీయడానికి ఉపయోగించే రూళ్ల కర్ర కూడా స్థూపాకారంగానే ఉంటుంది. నిత్య జీవితంలో స్తంబాలు అనేక రకాల త్రిమితీయ ఆకారాలలో ఉన్నప్పటికీ గణిత శాస్త్రంలో మాత్రం పై నుండి క్రింది వరకు ఒకే చుట్టుకొలత గల సమవృత్తాకార స్థూపంగానే పరిగణించాలి[2].

స్థూపాకారంగా ఉన్న ఖాళీ డబ్బా

ఘనపరిమాణం సవరించు

ఒక వృత్తాకార భూమి గల స్థూపం భూవ్యాసార్థం r, స్థూపం ఎత్తు h అయిన దాని ఘనపరిమాణం:

V = πr2h.

ఈ సూత్రం లంబంగా ఉండే స్థూపాలకు వర్తిస్తుంది. [3]

ఈ సూత్రాన్ని కావలెరి సూత్రం ద్వారా కూడా ఉత్పాదించవచ్చు.

సాధారణంగా అదే నియమం ప్రకారం ఒక స్థూపం ఘనపరిమాణం దాని భూవైశాల్యం, ఎత్తుల లబ్దానికి సమానంగా ఉంటుంది. ఉదాహరణకు దీర్ఘ స్థూపం లోని భూమి దీర్ఘ వృత్తాకారంలో ఉన్నందున దాని యొక్క దీర్ఘాక్షం a, హ్రస్వాక్షం b, దాని ఎత్తు h అయిన దాని ఘనపరిమాణం V = Ah అవుతుంది. దానిలో A అనేది దీర్ఘ వృత్తాకార భూమి వైశాల్యం (= πab). సమ దీర్ఘ వృత్తాకార స్థూపం యొక్క ఈ ఫలితాన్ని సమాకలనం ద్వారా కూడా పొందవచ్చు. అందులో స్థూపం యొక్క అక్షాన్ని ధనాత్మక x-అక్షంగానూ, A(x) = A ను ప్రతీ దీర్ఘవృత్తాకార మధ్యచ్ఛేద వైశాల్యంగా తీసుకుంటారు. అపుడు:

A solid elliptic cylinder with the semi-axes a and b for the base ellipse and height h

{\displaystyle V=\int _{0}^{h}A(x)dx=\int _{0}^{h}\pi abdx=\pi ab\int _{0}^{h}dx=\pi abh.}{\displaystyle V=\int _{0}^{h}A(x)dx=\int _{0}^{h}\pi abdx=\pi ab\int _{0}^{h}dx=\pi abh.}

స్థూపాకార అక్షాలను ఉపయోగిస్తే సమ వృత్తాకార స్థూపం యొక్క ఘనపరిమాణాన్ని సమాకలనం ద్వారా గణించవచ్చు.

{\displaystyle =\int _{0}^{h}\int _{0}^{2\pi }\int _{0}^{r}s\,\,ds\,d\phi \,dz}{\displaystyle =\int _{0}^{h}\int _{0}^{2\pi }\int _{0}^{r}s\,\,ds\,d\phi \,dz}

{\displaystyle =\pi \,r^{2}\,h.}{\displaystyle =\pi \,r^{2}\,h.}

Similar questions