Math, asked by sudeepthiqueen2007, 10 months ago

38. A heap of wheat is in the form of a cone whose diameter is 48 m and height is 7m. Find its
volume. If the heap is to be covered by canvas to protect it from rain, find the area of the canvasrequired.

Answers

Answered by sntarakeshwari
2

Answer:

Area of canvas required=1885.71m^{2}

Volume of heap=4225m^{3}

Step-by-step explanation:

r=d/2

r=48/2

r=24m

Volume of cone=1/3*π*r^{2}*h

1/3*22/7*24^{2}*7=Volume of cone

576*22*7/7*3=Volume of cone\

192*22=Volume of cone

4224m^{3}=Volume of cone

l^{2}=r^{2}+h^{2}

l^{2}=576+49

l^{2}=625

Taking root,

l=±25m

l=25m(Measurements cannot be negative)

CSA=π×r×l

CSA-22×24×25/7

CSA=13200/7

CSA=1885.71m^{2}

Area of canvas required=1885.71m^{2}

Volume of heap=4225m^{3}

Hope it helps..

Answered by Anonymous
251

\LARGE\underline\mathfrak{AnSwEr:}

•ᴠᴏʟᴜᴍᴇ ᴏғ ᴄᴏɴᴇ = \bf\ 4424cm^3

• ᴀʀᴇᴀ ᴏғ ᴄᴀɴᴠᴀs ʀᴇǫᴜɪʀᴇᴅ = \bf\ 1885.714cm^2

\LARGE\underline\mathfrak{Step \: by \: step \: explanation:}

\normalsize{\sf{\underline{\underline \orange{Given}}}}

• ᴅɪᴀᴍᴇᴛᴇʀ ᴏғ ᴄᴏɴᴇ = 48

•ʀᴀᴅɪᴜs ᴏғ ᴄᴏɴᴇ = \bf\frac{D}{2} \: = \: \frac{48}{2} \: = 24

ʜᴇɪɢʜᴛ ᴏғ ᴄᴏɴᴇ = 7

•sʟᴀɴᴛ ʜᴇɪɢʜᴛ ᴏғ ᴄᴏɴᴇ(ʟ)=

\bf\displaystyle\sqrt{ h^2 \: + r^2} \: = \: \sqrt{49 \: + \: 576} \: = 25

\normalsize{\sf{\underline{\underline \orange{To \: find}}}}

•ᴠᴏʟᴜᴍᴇ ᴏғ ᴄᴏɴᴇ

• ᴀʀᴇᴀ ᴏғ ᴄᴀɴᴠᴀs ʀᴇǫᴜɪʀᴇᴅ

\normalsize{\sf{\underline{\underline \orange{Volume \: of \: cone}}}}

{\boxed{\bf\red{Volume \: of \: cone \: = \: \frac{1}{3} \pi r^2h}}}

ʙʟ ʜ ʟs ɪɴ ᴀᴠᴀɪʟᴀʙʟᴇ ;

\large\tt\frac{1}{3} \times\frac{22}{7} \times\ (24)^2 \times\ 7

\large\tt\frac{ 1 \times\ 22 \times\  24 \times\ 24 \times\ 7}{ 3 \times\ 7}

\large\tt\ 1 \times\ 22 \times\ 8 \times\ 24

ɴʟ ʜ ᴠᴀʟᴜᴇs;( 24 ʙʏ 3 ɴ 7 ʙʏ 7)

\large\tt\ 4424cm^3

{\boxed{\sf{Volume \: of \: cone \: = \: 4424cm^{3} }}}

\normalsize{\sf{\underline{\underline \orange{Area \: of \: canvas \: required}}}}

•ᴀʀᴇᴀ ᴏғ ᴄᴀɴᴠᴀs ʀᴇǫᴜɪʀᴇᴅ ᴍᴇᴀɴs ᴛʜᴇ ᴏᴜᴛᴇʀ ᴄᴏᴠᴇʀɪɴɢ ʀᴇǫᴜɪʀᴇᴅ,sᴏ ᴡᴇ ᴜsᴇ ᴛʜᴇ ᴄᴜʀᴠᴇᴅ sᴜʀғᴀᴄᴇ ᴀʀᴇᴀ ғᴏʀᴍᴜʟᴀ

{\boxed{\bf\red{Curved \: surface \: area \: of \: cone \: = \: \pi rl}}}

ʙʟ ʜ ʟs ɪ ɪʟʙʟ ;

\large\tt\frac{22}{7} \times\ 24 \times\ 25

\large\tt\frac{ 22 \times\ 24 \times\ 25}{7}

\large\tt\ 1885.714cm^2

{\boxed{\sf{Area \: of \: canvas\: = \: 1885.714cm^2}}}


Anonymous: Awesome
Similar questions