38. If cosa+cos B+cosy = sina+sinß+siny=0, show that cos3a +cos3 + cosy = 3cos (a+ B +)
Answers
Answered by
0
Answer:
cos(β−γ)+cos(α−β)+cos(γ−α)=−
2
3
⇒cosβcosγ+sinβsinγ+cosαcosβ+sinαsinβ+cosγcosα+sinγsinα=−
2
3
⇒(2cosβcosγ+2cosαcosβ+2cosγcosα)+(2sinβsinγ+2sinαsinβ+2sinγsinα)=−3
⇒3+(2cosβcosγ+2cosαcosβ+2cosγcosα)+(2sinβsinγ+2sinαsinβ+2sinγsinα)=−3+3
⇒sin
2
α+cos
2
α+sin
2
β+cos
2
β+sin
2
γ+cos
2
γ+(2cosβcosγ+2cosαcosβ+2cosγcosα)
+(2sinβsinγ+2sinαsinβ+2sinγsinα)=0
⇒(cos
2
α+cos
2
β+cos
2
γ+2cosβcosγ+2cosαcosβ+2cosγcosα)
+(sin
2
α+sin
2
β+sin
2
γ+2sinβsinγ+2sinαsinβ+2sinγsinα)=0
⇒(cosα+cosβ+cosγ)
2
+(sinα+sinβ+sinγ)
2
=0
This is only true when,
cosα+cosβ+cosγ=0
and sinα+sinβ+sinγ=0
Similar questions