38 • नवीन अंकगणित ।
30. तीन अंकों वाली दो संख्याओं का महत्तम समापवर्तक 17 तथा लघुत्तम समापवर्त्य 714 है. इन संख्याओं का योग
कितना होगा?
| (एस०एस०सी० परीक्षा, 2007)
(a) 289 (b) 391
(c) 221
| (a) 731
31, दो संख्याओं के महत्तम समापवर्तक तथा लघुत्तम समापवर्त्य क्रमशः 12 तथा 72 हैं. यदि इन संख्याओं का योग
60 हो, तो इनमें से छोटी संख्या निम्न में से कौन-सी है?
(a) 12
(b) 24 |
(c) 60
(d) 72
32. दो संख्याओं के महत्तम समापवर्तक तथा लघुत्तम समापवर्त्य का योग 680 है. यदि लघुत्तम समापवर्त्य, महत्तम
समापवर्तक का 84 गुना हो तथा एक संख्या 56 हो, तो दूसरी संख्या क्या होगी? ।
(a) 36
(b) 84 ।
(c) 96
(d) 112
33. दो संख्याओं का लघुत्तम समापवर्त्य 120 है. निम्नलिखित में से कौन-सी संख्या इन संख्याओं का महत्तम समापवर्तक
(एस०एस०सी० परीक्षा, 2005)
नहीं हो सकती ?
(a) 8 ।
| (b) 12
34. ऐसी संख्याओं के कितने जोड़े होंगे जिनका महत्तम समापवर्तक 16 तथा लघुत्तम समापवर्त्य 136 हो?
| (c) 24
(d) 35
(a) केवल एक (b) केवल दो
35. 306 तथा 657 का महत्तम समापवर्तक 9 है, लघुत्तम समापवर्त्य कितना होगा?
(c) अनन्त
(a) कोई नहीं
(a) 22338 (b) 23328
36. वह न्युनतम पर्ण वर्ग संव्या या प्रोगी
(c) 28233
।
| (a) 28323
Answers
Answered by
3
answer 30.
The HCF of two numbers is 17. So,
Let the two numbers be 17x & 17y.
LCM of 17x & 17y.
LCM =17xy.
=> 17xy=714.
=> xy =714/17.
=> 42.
So, Now the factors of 42 are
=> 1×42
=> 2×21
=> 3×14
=> 6×7
So, There are 4 cases
Case1 :-
Let x=1 & y =42.
Then the numbers will be
=> 17×1=17
=> 17×42= 714.
This condition is not possible. because the From the question, the two numbers are 3-digit numbers .But 17 is a two digit number.
Case2:-
Let x=2 & y =21
The numbers,
=> 17×2=34
=> 17×21=357.
This condition is also not possible. because 34 is a 2-digit number.
Case3:-
Let x=3 & y=14
The numbers,
=> 17×3= 51
=>17×14 =238.
This condition is also not possible.
Case4:-
Let x=6 & y=7
The numbers,
=> 17×6= 102
=>17×7=119.
This is the only condition. that is possible.
So, The sum of the numbers is
=> 102+119
=> 221.
31.
Let the two numbers be x and y.
We know that.. product of two numbers = HCFx LCM.
Therefore XY= 12 x 72= 864….(1)
According to given condition, their sum is 60
Therefore x+y = 60……….(2)
We know that
(x-y)² =(x+y)² -4xy
Substitute values from 1 & 2
(X-y)² = 3600–4x864=144
X-Y =√144= 12…(3)
By solving 2 and 3
We get x=36 and y=24.
so your answer will be 24
33.
let the hcf should be x and lcm 84x
680=x+84x
680=85x
680/85=x
8=x
8*84=lcm
672
lcm*hcf=xy
8*672=x*56
8*672/56=x
96=x
34.
H.C.F. of two numbers divides their L.C.M. exactly. Since 16 is not a factor of 136, it states that there does not exist any pair of numbers with H,C.F. 16 and L.C.M. 136.
35.
Given,
HCF of 306 & 657 = 9
LCM = ?
Now,
We know,
HCF × LCM = Product of two numbers
9 × LCM = 306 × 657
LCM = 306 × 657/9
LCM = 34 × 657
LCM = 22338
36.
The HCF of two numbers is 17. So,
Let the two numbers be 17x & 17y.
LCM of 17x & 17y.
LCM =17xy.
=> 17xy=714.
=> xy =714/17.
=> 42.
So, Now the factors of 42 are
=> 1×42
=> 2×21
=> 3×14
=> 6×7
So, There are 4 cases
Case1 :-
Let x=1 & y =42.
Then the numbers will be
=> 17×1=17
=> 17×42= 714.
This condition is not possible. because the From the question, the two numbers are 3-digit numbers .But 17 is a two digit number.
Case2:-
Let x=2 & y =21
The numbers,
=> 17×2=34
=> 17×21=357.
This condition is also not possible. because 34 is a 2-digit number.
Case3:-
Let x=3 & y=14
The numbers,
=> 17×3= 51
=>17×14 =238.
This condition is also not possible.
Case4:-
Let x=6 & y=7
The numbers,
=> 17×6= 102
=>17×7=119.
This is the only condition. that is possible.
So, The sum of the numbers is
=> 102+119
=> 221.
31.
Let the two numbers be x and y.
We know that.. product of two numbers = HCFx LCM.
Therefore XY= 12 x 72= 864….(1)
According to given condition, their sum is 60
Therefore x+y = 60……….(2)
We know that
(x-y)² =(x+y)² -4xy
Substitute values from 1 & 2
(X-y)² = 3600–4x864=144
X-Y =√144= 12…(3)
By solving 2 and 3
We get x=36 and y=24.
so your answer will be 24
33.
let the hcf should be x and lcm 84x
680=x+84x
680=85x
680/85=x
8=x
8*84=lcm
672
lcm*hcf=xy
8*672=x*56
8*672/56=x
96=x
34.
H.C.F. of two numbers divides their L.C.M. exactly. Since 16 is not a factor of 136, it states that there does not exist any pair of numbers with H,C.F. 16 and L.C.M. 136.
35.
Given,
HCF of 306 & 657 = 9
LCM = ?
Now,
We know,
HCF × LCM = Product of two numbers
9 × LCM = 306 × 657
LCM = 306 × 657/9
LCM = 34 × 657
LCM = 22338
36.
Answered by
0
दो संख्याओं के महत्तम समापवर्तक तथा लघुत्तम समापवर्त्य का योग 680 है. यदि लघुत्तम समापवर्त्य, महत्तम
समापवर्तक का 84 गुना हो तथा एक संख्या 56 हो, तो दूसरी संख्या क्या होगी? ।
Similar questions