English, asked by rajshakhla627, 7 months ago

38. Prove that root (sec2 theta + cosec2 theta)
=tan theta plus cot theta

Answers

Answered by hipsterizedoll410
3

Prove that:

\sf \sqrt{sec^2\theta+cosec^2\theta}=tan\theta+cot\theta

Proof:

L.H.S:

\sf We\:know\:that,

\sf sec^2\theta=\dfrac{1}{cos^2\theta} \:and\: cosec^2\theta=\dfrac{1}{sin^2\theta}

\sf \therefore  \sqrt{sec^2\theta+cosec^2\theta}=\sf\sqrt{ \dfrac{1}{cos^2\theta}+\dfrac{1}{sin^2\theta} }

\Rightarrow  \sf\sqrt{ \dfrac{sin^2\theta+cos^2\theta}{cos^2\theta.sin^2\theta}

\Rightarrow  \sf\sqrt{ \dfrac{1}{cos^2\theta.sin^2\theta}} \quad (as\: sin^2\theta+cos^2\theta=1)

\Rightarrow \sf  \dfrac{1}{cos\theta.sin\theta}

R.H.S:

\sf tan\theta+cot\theta

\Rightarrow \sf \dfrac{sin\theta}{cos\theta}+\dfrac{cos\theta}{sin\theta}

\Rightarrow \sf \dfrac{sin^2\theta+cos^2\theta}{sin\theta.cos\theta}

\Rightarrow \sf \dfrac{1}{sin\theta.cos\theta}

Hence,

L.H.S=R.H.S

Similar questions