Math, asked by kc3334596, 11 months ago

39. A bucket open at the top is in the form of a frustum of a cone with a capacity of 12308.8 cm". The radii of the top and bottom of circular ends of the bucket are 20 cm and 12 cm respectively. Find the height of the bucket and also the area of the metal sheet used in making it. (Use π = 3.14)​

Answers

Answered by sam252496
5

Answer:

hope so helped you and all the best for exams .my too exams are going .

Attachments:
Answered by Anonymous
12

Step-by-step explanation:

\huge\underline{ \underline{ \red{solve =  > }}}  \\ {{ \blue{the \: valume \:  \: of \: bucket =  12308.8 {cm}^{3}  }}}  \:  \\  {{ \blue{ r_{1} = 20cm \:    }}}  \:  \\  {{ \blue{ r_{2} = 12cm  }}}  \: \\  {{ \blue{h =  ?}}}  \: \\ we \: have \:  \\ valume \:of \: bucket =  \frac{\pi h}{3}( { r_{1} }^{2} + { r_{2} }^{2} +r_{1}r_{2} )\\  12308.8 = 3.14 \times  \frac{h}{3} ( {20}^{2} +  {12}^{2}  + 20 + 12) \\  =  > h = 12308.8 \times  \frac{3}{3.14 \times 784} \\ h = 15 cm \\ height \: of \: the \: bucket \: (h) = 15cm \\ {{ \blue{surface \: area \: of \: the \: metal \: sheet \: used}}}   \\ =  \pi {r}^{2} + \pi(r_{1}  + r_{2})l \\ l =  \sqrt{ {h}^{2} }  +(  {r_{1}   -  r_{2}})^{2}  \\ l =  \sqrt{15 +  {8}^{2} }  =  \sqrt{225 + 64} = 17cm \\ {{ \blue{surface \: area \: of \: the \: metal \: sheet \: used}}}  \:  \\ \pi {r_{2}}^{2}  + \pi( r_{1} + r_{2})l \\  =  > 3.14 \times  {12}^{2}  +  \frac{22}{7} \times 32 \times 17 \\ 3.14(144 + 544) \\  =  > 2160.32 {cm}^{2}  \\ {{ \blue{hence =  > }}} \\ height \: of \: the \: bucket = {{ \blue{15cm }}} \\ area \: of \: metal \: sheet \: used = {{ \blue{2160.32 {cm}^{2} }}}

Similar questions