39. Sum to n terms of the series sino sin20 + sin20 sin30 + sin30 sin4e + is equal to n n () (1) cose 1 sin ne ..cos(n +2) 2 sino (2) sine - sin 1 sin ne 2 2. 2 n 3) (3) cose coso - cos (n +2) (4) sino + sinne 2
Answers
Answered by
0
Answer:
Question
Bookmark
If x=cosθ+isinθ the value of x
n
+
x
n
1
is
Medium
Solution
verified
Verified by Toppr
Correct option is
A
2cosnθ
x=cosθ+isinθ
Applying Euler's form
x=cosθ+isinθ=e
iθ
.
Hence
x
n
=e
inθ
.
Similarly
x
1
=
x
ˉ
=cosθ−isinθ=e
−iθ
Hence
x
n
1
=e
−inθ
.
Hence
x
n
+
x
n
1
=e
inθ
+e
−inθ
=cosnθ+isinnθ+cosnθ−isinnθ
=2cosnθ.
Similar questions