Math, asked by rashmithapachhetri, 5 months ago

39. The volume of a metallic cylindrical pip
is 770 cm. Its length is 14 cm and its
external radius is 9 cm. Then, its
thickness is​

Answers

Answered by Mysterioushine
69

Given :

  • Volume of the hollow cylindical pipe = 770 cm³
  • Length of the cylindrical pipe = 14 cm
  • External radius of the cylindrical pipe = 9 cm

To Find :

  • Thickness

Solution :

Volume of a hollow cylinder is given by ,

 \\  \star \: {\boxed{\purple{\sf{Volume_{(hollow \: cylinder) } = \pi( {R}^{2}  -  {r}^{2})h }}}} \\  \\

Here ,

  • R is external radius
  • r is inner radius
  • h is height

We have ,

  • R = 9 cm
  • h = 14 cm
  • V = 770 cm³

Substituting the values ;

 \\   : \implies \sf \: 770 =  \dfrac{22}{7} ( {9}^{2}  -  {r}^{2} )14 \\  \\

 \\  :  \implies \sf \: 770 =  \dfrac{22}{7} (81 -  {r}^{2} )14 \\  \\

 \\   : \implies \sf \: 770 = 22 \times 2(81 -  {r}^{2} ) \\  \\

 \\   : \implies \sf \: 770 = 44(81 -  {r}^{2} ) \\  \\

 \\   : \implies \sf \: 81 -  {r}^{2}  =  \dfrac{770}{44}  \\  \\

 \\   : \implies \sf \: 81 -  {r}^{2}  = 17.5 \\  \\

 \\   : \implies \sf \:  -  {r}^{2}  = 17.5 - 81 \\  \\

 \\   : \implies \sf \:  -  {r}^{2}  =  - 63.5 \\  \\

 \\   : \implies \sf \: r =  \sqrt{63.5}  \\  \\

 \\   : \implies{\underline{\boxed{\red{\mathfrak{r = 7.96 \: cm}}}}}  \\  \\

Now , Thickness of a hollow cylinder is given by ;

 \\  \star \: {\boxed{\purple{\sf{thickness_{(hollow \: cylinder)} = R - r}}}} \\  \\

 \\   : \implies \sf \: thickness_{(cylindrical \: pipe)} = 14 - 7.96 \:  \\  \\

 \\  :  \implies{\underline{\boxed {\pink{\mathfrak{thickness_{(cylindrical\: pipe)} = 6.04 \: cm}}}}} \:  \bigstar \\  \\

Hence ,

  • The thickness of the given hollow cylinder 6.04 cm.
Answered by Anonymous
26

Given :-

Volume of pipe = 770 cm

Length of pipe = 14 cm

External Radius = 9 cm

To Find :-

Thickness

Solution :-

 \bf \: volume = \pi (R { }^{2}  -  {r}^{2} )h

 \tt \: 770 =  \dfrac{22}{7}  \times (9 {}^{2}  -  {r}^{2} ) \times 14

 \tt \: 770  =  22 \times (81 -  {r}^{2} ) \times 2

 \tt770 = 44 \times (81 -  {r)}^{2}

 \tt \: 81 -  {r}^{2}  =  \dfrac{770}{44}

 \tt \: 81  -  {r}^{2}  = 17.5

 \tt \:  -  {r}^{2}  = 17.5 - 81

 \tt \:  -  {r}^{2}  =  - 63.5

 \tt \:  {r}^{2}  =  63.5

 \tt \: r =  \sqrt{63.5}

 \frak \pink{ \: r = 7.96 \: cm}

Now,

Let's find Thickness

 \bf \: Thickness = R - r

 \tt \: Thickness = 14 - 7.96

 \tt \: Thickness =  6.04

Similar questions