3a+1/2a=5
find 4a³+1/8a³=?
Expansion
Answers
Answer:
Does 1/2a equal 12a (more commonly represented with a2) , or is it meant to equal 12a ? For clarity you could have instead had a/2 or 1/(2a). There is the same issue of notation for 1/3a. What is it supposed to represent?
Here is why clarity is important. I have set the answer to equal b, but because of the ambiguity of the question, b can equal 6,63±353√18, or 5314.
3a+a2=9
⟹2(3a+a2)=9×2
⟹7a7=187
⟹a=247
2a+a3=b
⟹2(2+47)+(2+47)3=b
⟹3(5+17+(2+47)3)=3b
⟹15+2+3+47=3b
⟹3b3=183
b=6
3a+12a=9
⟹2a(3a+12a)=9×2a
⟹6a2+1=18a
⟹6a2−18a+1=0
⟹a=9±53–√6
2a+13a=b
⟹2(9±53–√6)+13(9±53–√6)=b
⟹(9±53–√6(9±53–√3)+13(9±53–√6))=(9±53–√6)×b
⟹26±153–√3+13=(9±53–√)b6
⟹6(9±53–√)=6×(9±53–√)b6
⟹b=6
Assuming a=9±53–√6
2a+a3=b
⟹2(9±53–√6)+(9±53–√6)3=b
⟹3(9±53–√3+(9±53–√6)3)=3b
⟹6((9±53–√)+9±53–√6)=18b
⟹(54±303–√)+(9±53–√)=18b
⟹18b18=63±353–√18
b=63±353–√18
Assuming a=247
2a+13a=b
⟹2(2+47)+13(2+47)=b
⟹(2+47)(5+17+13(2+47))=247×b
⟹147(13+1149+13)=147(2b+4b7)
⟹378b378=1971378
b=531