Math, asked by asmitakerketta6, 1 month ago

(3a^4 b^5)^2 . (10a^3b^2)^3

(2a^5 b^2)^4​

Answers

Answered by samantagopalchandra9
1

Step-by-step explanation:

After adding we get:

(3a−4b+4c)+(2a+3b−8c)+(a−6b+c)

=3a+2a+a−4b+3b−6b+4c−8c+c

=6a−7b−3c

Answered by navalevanita166
3

Answer:

:⟼2A+3B=[

2

4

3

0

]−−(1)

and

\begin{gathered}\rm :\longmapsto\:3A + 2B = \bigg[ \begin{matrix} - 2&2 \\ 1& - 5 \end{matrix} \bigg] - - - (2)\end{gathered}

:⟼3A+2B=[

−2

1

2

−5

]−−−(2)

On Adding equation (2) and equation (1), we get

\begin{gathered}\rm :\longmapsto\:5A + 5B = \bigg[ \begin{matrix}0&5 \\ 5& - 5 \end{matrix} \bigg]\end{gathered}

:⟼5A+5B=[

0

5

5

−5

]

\begin{gathered}\rm :\longmapsto\:A + B = \bigg[ \begin{matrix}0&1 \\ 1& - 1 \end{matrix} \bigg] - - - (3)\end{gathered}

:⟼A+B=[

0

1

1

−1

]−−−(3)

On Subtracting equation (1) from equation (2), we get

\begin{gathered}\rm :\longmapsto\:A - B = \bigg[ \begin{matrix} - 4& - 1\\ - 3& - 5 \end{matrix} \bigg] - - - (4)\end{gathered}

:⟼A−B=[

−4

−3

−1

−5

]−−−(4)

On Adding equation (3) and (4), we get

\begin{gathered}\rm :\longmapsto\:2A = \bigg[ \begin{matrix} - 4&0 \\ - 2& - 6 \end{matrix} \bigg]\end{gathered}

:⟼2A=[

−4

−2

0

−6

]

\begin{gathered}\rm :\longmapsto\:A = \bigg[ \begin{matrix} - 2&0 \\ - 1& - 3 \end{matrix} \bigg]\end{gathered}

:⟼A=[

−2

−1

0

−3

]

On Subtracting equation (4) from equation (3), we get

\begin{gathered}\rm :\longmapsto\:2B = \bigg[ \begin{matrix}4&2 \\ 4&4 \end{matrix} \bigg]\end{gathered}

:⟼2B=[

4

4

2

4

]

\begin{gathered}\rm :\longmapsto\:B = \bigg[ \begin{matrix}2&1 \\ 2&2 \end{matrix} \bigg]\end{gathered}

:⟼B=[

2

2

1

2

]

Hence,

\begin{gathered}\rm :\longmapsto\:A = \bigg[ \begin{matrix} - 2&0 \\ - 1& - 3 \end{matrix} \bigg]\end{gathered}

:⟼A=[

−2

−1

0

−3

]

and

\begin{gathered}\bf :\longmapsto\:B = \bigg[ \begin{matrix}2&1 \\ 2&2 \end{matrix} \bigg]\end{gathered}

:⟼B=[

2

2

1

2

]

Similar questions