Math, asked by surajkumar6240, 11 months ago

3a(4a-8)=-2 find 27a2+3/4a2+4=?​

Answers

Answered by lublana
3

\frac{27a^2+3}{4a^2+4}=\frac{3(105+18\sqrt{30}}{2(34+4\sqrt{30}} or \frac{27a^2+3}{4a^2+4}=\frac{3(105-18\sqrt{30}}{2(34-4\sqrt{30}}

Step-by-step explanation:

3a(4a-8)=-2

12a^2-24a=-2

12a^2-24a+2=0

6a^2-12a+1=0

It is quadratic equation in a.

Discriminant,D=b^2-4ac for equation ax^2+bx+c=0

Where a= coefficient of x^2

b=Coefficient of x

c=Constant term

D=(-12)^2-4(6)(1)=144-24=120

Quadratic formula:

x=\frac{-b\pm \sqrt D}{2a}

Using this formula then we get

a=\frac{12\pm\sqrt{120}}{2(6)}

a=\frac{12\pm 2\sqrt{30}}{12}

a=1+\frac{\sqrt{30}}{6} or a=1-\frac{\sqrt{30}}{6}

Substitute a=1+\frac{\sqrt{30}}{6}

\frac{27a^2+3}{4a^2+4}=\frac{27(1+\frac{\sqrt{30}}{6})^2+3}{4(1+\frac{\sqrt{30}}{6})^2+4}

\frac{27a^2+3}{4a^2+4}=\frac{27(1+\frac{30}{36}+\frac{\sqrt{30}}{3})+3}{4(1+\frac{30}{36}+\frac{\sqrt{30}}{3})+4}=\frac{27+\frac{45}{2}+9\sqrt{30}+3}{4+\frac{10}{3}+\frac{4\sqrt{30}}{3}+4}

\frac{27a^2+3}{4a^2+4}=\frac{\frac{105+18\sqrt{30}}{2}}{\frac{34+4\sqrt{30}}{3}}=\frac{105+18\sqrt{30}}{2}\times\frac{3}{34+4\sqrt{30}}

\frac{27a^2+3}{4a^2+4}=\frac{3(105+18\sqrt{30})}{2(34+4\sqrt{30})}

Now, substitute a=1-\frac{\sqrt{30}}{6}

\frac{27a^2+3}{4a^2+4}=\frac{27(1+\frac{30}{36}-\frac{\sqrt{30}}{3})+3}{4(1+\frac{30}{36}-\frac{\sqrt{30}}{3})+4}

\frac{27a^2+3}{4a^2+4}=\frac{27+\frac{45}{2}-9\sqrt{30}+3}{4+\frac{10}{3}-\frac{4\sqrt{30}}{3}+4}

\frac{27a^2+3}{4a^2+4}=\frac{\frac{105-18\sqrt{30}}{2}}{\frac{34-4\sqrt{30}}{3}}

\frac{27a^2+3}{4a^2+4}=\frac{3(105-18\sqrt{30})}{2(34-4\sqrt{30})}

#Learns more:

https://brainly.in/question/8375659

Answered by anurag2305
18

Step-by-step explanation:

Answer is 103. See this image.

Attachments:
Similar questions