Math, asked by shashikalamoulya776, 11 months ago

(3a-4b+2c)^2 expand the following using suitable identities

Answers

Answered by warylucknow
10

The expansion of (3a - 4b + 2c)²  is 9a^{2}+16b^{2}+4c^{2}-24ab-16bc+12ca.

Step-by-step explanation:

The expansion of (a + b + c)² is:

(a + b + c)² = a² + b² + c + 2 (ab + bc + ca)

The expression is:

(3a - 4b + 2c)²

Expand the expression provided using the identity mentioned above as follows:

(3a - 4b + 2c)^{2}\\=(3a)^{2}+(-4b)^{2}+(2c)^{2}+2[(3a\times -4b)+(-4b\times 2c)+(2c\times 3a)]\\=9a^{2}+16b^{2}+4c^{2}+2(-12ab-8bc+6ca)\\=9a^{2}+16b^{2}+4c^{2}-24ab-16bc+12ca

Thus, the expansion of (3a - 4b + 2c)²  is 9a^{2}+16b^{2}+4c^{2}-24ab-16bc+12ca.

Learn more:

https://brainly.in/question/3489654

Answered by mukulrajput2006
17

(3a-4b+2c)^2

=(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca

=(3a)^2+(-4b)^2+(2c)^2+2(3a)(-4b)+2(-4b)(2c)+2(2c)(3a)

=9a^2-16b^2+4c^2-24ab-16bc+12ca

mark on brainlist

Step-by-step explanation:

Similar questions