Math, asked by technogaming89, 7 months ago

3a + 4b = 43                      -2a + 3b = 11 (BY ELIMINATION)​

Answers

Answered by ItzDαrkHσrsє
6

\large{\underline{\sf{\orange{Given-}}}}

  • \sf{3a + 4b = 43  \: .... \: (1)}

  • \sf{ - 2a + 3b = 11 \: .... \: (2)}

\large{\underline{\sf{\purple{To \: Find-}}}}

  • Values of a & b

\large{\underline{\sf{\blue{Solution-}}}}

Multiplying the Equation (1) by (×3) & Multiplying the Equation (2) by (×4)

\sf\leadsto{3a + 4b = 43 \: .... \:  ( \times 3)}

\sf\leadsto{ - 2a + 3b = 11 \: .... \: ( \times 4)}

We get,

\sf\leadsto{9a \: {\cancel{+12b}}  = 129}

\sf\leadsto{ - 8a \: {\cancel{+12b}} = 44}

 \:  \:  \:  \:  \:  \:  \: {( + ) \: \: \: \: \:  \: \: \: \: \: \: \: \: \: \: ( - )}

______________________

\sf\leadsto{17a = 85}

\sf\leadsto{a = \frac{\cancel{85}}{\cancel{17}}}

\boxed{\sf\red{★ \: a = 5}}

Placing (a = 5) in the Equation (2),

\sf\leadsto{ - 2a + 3b = 11 \: .... \: (2)}

\sf\leadsto{ - 2 \times 5 + 3b = 11}

\sf\leadsto{ - 10 + 3b = 11}

\sf\leadsto{3b = 11 + 10}

\sf\leadsto{3b = 21}

\sf\leadsto{b = \frac{\cancel{21}}{\cancel{3}}}

\boxed{\sf\green{★ \: b = 7}}

Hence,

  • a = 5

  • b = 7
Similar questions