Math, asked by kiranrai70077, 1 year ago

3a+5d/5a+7d=3a^3 +5b^3/5a^3+7b^3

Answers

Answered by amitnrw
4

Answer:

either a = 0 & b≠0 or b = 0 & a≠0

 or a = ±b  for non-zero values

Step-by-step explanation:

3a+5b/5a+7b=3a^3 +5b^3/5a^3+7b^3

(3a + 5b)/(5a + 7b) =  (3a³ + 5b³)/(5a³ + 7b³)

=> (3a + 5b)(5a³ + 7b³) = (5a + 7b)(3a³ + 5b³)

=> 15a⁴ + 35b⁴ + 21ab³ + 25a³b  =  15a⁴  + 35b⁴  + 25ab³ + 21a³b

=> 21ab³ + 25a³b  = 25ab³ + 21a³b

=> 4a³b = 4ab³

=> a³b = ab³

=> a³b - ab³ = 0

=> ab(a² - b²) = 0

=> ab(a + b) ( a - b) = 0

=> a = 0 , b = 0  , a = ±b

both a & b  can not be zero together as then denominator would be zero

either a = 0 & b≠0 or b = 0 & a≠0

or a = ±b  for non-zero values

Answered by yashchirdhani
0

Answer:

sorry don't know the answer of this question

Similar questions