Math, asked by Anonymous, 6 months ago

(3a+b)^3 + (3a-b)^3​

Answers

Answered by Anonymous
8

\huge\tt{\bold{\underline{\underline{Question᎓}}}}

(3a+b)^3 + (3a-b)^3

\huge\tt{\bold{\underline{\underline{Answer᎓}}}}

╔════════════════════════╗

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️

Here ,this identity is used:-

\bold{\red{ =  >  {(a + b)}^{3}  =  {a}^{3}  +  {b}^{3}  + 3ab(a + b)}}

 \bold{\pink{=  >  {(a - b)}^{3}  =  {a}^{3}    + {b}^{3}  - 3ab(a - b)}}

Now come to the Question:-

 =  >   {(3a + b)}^{3}  =  {(3a)}^{3}  +  {b}^{3}  + 3(3a)(b)(3a + b)

 =  27 {a}^{3}  +  {b}^{3}  + 9ab(3a + b)

 = 27 {a}^{3}  +  {b}^{3}  + 27 {a}^{2} b + 9a {b}^{2}

 =  >  {(3a - b)}^{3}  =  {(3a)}^{3}  +  {b}^{3}  - 3(3a)(b)(3a - b)

 = 27 {a}^{3}  +  {b}^{3}  - 9ab(3a - b)

 = 27 {a}^{3}  +  {b}^{3}  - 27 {a}^{2} b + 9a {b}^{2}

\bold{Now \:,adding \:both\: terms }

 =  >  {(3a + b)}^{3}  +  {(3a - b)}^{3}

 = 27 {a}^{3}  +  {b}^{3}  + 27 {a}^{2} b + 9a {b}^{2}  + 27 {a}^{3}  +  {b}^{3}  - 27 {a}^{2} b + 9a {b}^{2}

 =  > 27 {a}^{3}  +  {b}^{3}  + 9a {b}^{2}  + 27 {a}^{3}  +  {b}^{3}  + 9a {b}^{2}

 =  > 54 {a}^{3}  + 2 {b}^{3}  +18a {b}^{2}

=>Taking out 2 common from whole equation:-

 \bold{=  >  2(27 {a}^{3}  +  {b}^{3}  + 9a {b}^{2} )}

╚════════════════════════╝

нσρє ıт нєłρs yσυ

_____________________

тнαηkyσυ

Answered by Anonymous
3

Answer:

We have,3a(4a-5)+3=3343-5+3 As a=3=912-5+3=97+3=63+3=66

Similar questions