3a4-48b4 factorize this equation
Answers
Answered by
77
Given :
Factorize
3a⁴ - 48b⁴
Solution :
Solve this question by applying identity
Solve this question by applying identitya² - b² = (a+b)(a-b)
= 3a⁴ - 48b⁴
Take 3 as a common
= 3 (a⁴ - 16b⁴)
= 3 [ (a²)² - (4b²)²]
= 3 [ (a²+4b²)(a²-4b²) ]
= 3 (a²+4b²)[ (a)²-(2b)² ]
= 3 (a²+4b²)[ (a+2b)(a-2b) ]
= 3 (a²+4b²)(a+2b)(a-2b)
Important identities :
★ (a+b)² = a² + b² + 2ab
★ (a-b)² = a² + b² - 2ab
★ (a-b)³ = a³ - b³ - 3ab(a-b)
★ (a+b)³ = a³ + b³ + 3ab(a+b)
★ a² - b² = (a+b)(a-b)
★ a³ + b³ = (a+b)(a²- ab + b²)
★ a³ - b³ = (a-b)(a² + ab + b²)
Answered by
7
3a⁴ - 48b⁴
↪ Factorize
Using Identity, a² - b² = (a + b)(a - b), solve the above equation
3a⁴ - 48b⁴
3(a⁴ - 16b⁴)
3[(a²)² - (4b²)²]
3[(a² + 4b²)(a² - 4b²)]
3[(a² + 4b²)(a + 2b)(a - 2b)]
Similar questions