Math, asked by reechaadhakal, 1 month ago

3e^xtany dx + (1-e^x) sec^2ydy=0​

Answers

Answered by mathdude500
5

\large\underline{\bold{Given \:Question - }}

\rm :\longmapsto\:Solve :  \:  {3e}^{x}tany \: dx + (1 -  {e}^{x}) {sec}^{2}y \: dy = 0

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:\: {3e}^{x}tany \: dx + (1 -  {e}^{x}) {sec}^{2}y \: dy = 0

can be rewritten as

\rm :\longmapsto\:\: {3e}^{x}tany \: dx  =  -  \: (1 -  {e}^{x}) {sec}^{2}y \: dy

\rm :\longmapsto\:\: {3e}^{x}tany \: dx  =  \: ({e}^{x} - 1) {sec}^{2}y \: dy

\rm :\longmapsto\:\dfrac{ {3e}^{x} }{ {e}^{x}  - 1}dx = \dfrac{ {sec}^{2} y}{tany} dy

On integrating both sides, we get

\rm :\longmapsto\:\displaystyle\int\sf \dfrac{ {3e}^{x} }{ {e}^{x}  - 1}dx =\displaystyle\int\sf  \dfrac{ {sec}^{2} y}{tany} dy

\rm :\longmapsto\:3\displaystyle\int\sf \dfrac{ \dfrac{d}{dx}({e}^{x} - 1) }{ {e}^{x}  - 1}dx =\displaystyle\int\sf  \dfrac{ \dfrac{d}{dx}{tan} y}{tany} dy

\rm :\longmapsto\:3 log( {e}^{x} - 1 )  =  log(tany)  +  log(c)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \green{\boxed{ \bf  \because\: \displaystyle\int\sf \dfrac{\dfrac{d}{dx}f(x)}{f(x)} =  log(f(x))  + c }}

\rm :\longmapsto\:log( {e}^{x} - 1 )^{3}  =  log(tany \times c)

\green{\boxed{ \sf  \because \: logx + logy  = logxy \:  \:  \: and \:  \:  \: log {x}^{y}  = y \: logx\: }}

\bf\implies \: {( {e}^{x} - 1) }^{3}  = c \: tany

Additional Information :-

Linear Differential equation :-

The linear differential equation is given by

\rm :\longmapsto\:\dfrac{dy}{dx}  +  py = q \: wherep, \: q \:  \in \: f(x)

Solution is given by

\rm :\longmapsto\:y \times IF = \displaystyle\int\sf (q \times IF) \: dx

where,

\rm :\longmapsto\:IF =  {e} \:  \: ^{\displaystyle\int\sf p \: dx}

Similar questions