Math, asked by ummul9069, 1 year ago

(3m+1/a)x2 +(11+m/b)x +9/c=0

Answers

Answered by rudrakshagohilpelfti
0

Step  1  :

           9

Simplify   —

           c

Equation at the end of step  1  :

       1             m      9

 (((3m+—)•(x2))+((11+—)•x))+—  = 0  

       a             b      c

Step  2  :

           m

Simplify   —

           b

Equation at the end of step  2  :

       1             m      9

 (((3m+—)•(x2))+((11+—)•x))+—  = 0  

       a             b      c

Step  3  :

Rewriting the whole as an Equivalent Fraction :

3.1   Adding a fraction to a whole  

Rewrite the whole as a fraction using  b  as the denominator :

          11     11 • b

    11 =  ——  =  ——————

          1        b    

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole  

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

3.2       Adding up the two equivalent fractions  

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

11 • b + m     m + 11b

——————————  =  ———————

    b             b    

Equation at the end of step  3  :

       1         (m+11b)     9

 (((3m+—)•(x2))+(———————•x))+—  = 0  

       a            b        c

Step  4  :

Equation at the end of step  4  :

       1        x•(m+11b)  9

 (((3m+—)•(x2))+—————————)+—  = 0  

       a            b      c

Step  5  :

           1

Simplify   —

           a

Equation at the end of step  5  :

          1           x • (m + 11b)     9

 (((3m +  —) • x2) +  —————————————) +  —  = 0  

          a                 b           c

Step  6  :

Rewriting the whole as an Equivalent Fraction :

6.1   Adding a fraction to a whole  

Rewrite the whole as a fraction using  a  as the denominator :

          3m     3m • a

    3m =  ——  =  ——————

          1        a    

Adding fractions that have a common denominator :

6.2       Adding up the two equivalent fractions  

3m • a + 1     3ma + 1

——————————  =  ———————

    a             a    

Equation at the end of step  6  :

   (3ma + 1)          x • (m + 11b)     9

 ((————————— • x2) +  —————————————) +  —  = 0  

       a                    b           c

Step  7  :

Equation at the end of step  7  :

  x2 • (3ma + 1)    x • (m + 11b)     9

 (—————————————— +  —————————————) +  —  = 0  

        a                 b           c

Step  8  :

Calculating the Least Common Multiple :

8.1    Find the Least Common Multiple  

     The left denominator is :       a  

     The right denominator is :       b  

                 Number of times each Algebraic Factor

           appears in the factorization of:

   Algebraic    

   Factor      Left  

Denominator   Right  

Denominator   L.C.M = Max  

{Left,Right}  

a  1 0 1

b  0 1 1

     Least Common Multiple:  

     ab  

Calculating Multipliers :

8.2    Calculate multipliers for the two fractions  

   Denote the Least Common Multiple by  L.C.M  

   Denote the Left Multiplier by  Left_M  

   Denote the Right Multiplier by  Right_M  

   Denote the Left Deniminator by  L_Deno  

   Denote the Right Multiplier by  R_Deno  

  Left_M = L.C.M / L_Deno = b

  Right_M = L.C.M / R_Deno = a

Making Equivalent Fractions :

8.3      Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.  

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

  L. Mult. • L. Num.      x2 • (3ma+1) • b

  ——————————————————  =   ————————————————

        L.C.M                    ab        

  R. Mult. • R. Num.      x • (m+11b) • a

  ——————————————————  =   ———————————————

        L.C.M                   ab        

Adding fractions that have a common denominator :

8.4       Adding up the two equivalent fractions  

x2 • (3ma+1) • b + x • (m+11b) • a     3max2b + max + 11axb + x2b

——————————————————————————————————  =  ——————————————————————————

                ab                                 ab            

Equation at the end of step  8  :

 (3max2b + max + 11axb + x2b)    9

 ———————————————————————————— +  —  = 0  

              ab                 c

Step  9  :

Step  10  :

Pulling out like terms :

10.1     Pull out like factors :

  3max2b + max + 11axb + x2b  =  

 x • (3maxb + ma + 11ab + xb)  

Calculating the Least Common Multiple :

10.2    Find the Least Common Multiple  




Similar questions