Math, asked by harshbhai186, 17 days ago

3rd one plz solve it ​

Attachments:

Answers

Answered by anindyaadhikari13
4

Solution:

Given Integral:

 \displaystyle \rm \longrightarrow I = \int \dfrac{1}{4 + 9 {x}^{2} } \: dx

Can be written as:

 \displaystyle \rm \longrightarrow I = \int \dfrac{1}{9( {x}^{2} +  \frac{4}{9}  )} \: dx

 \displaystyle \rm \longrightarrow I = \int \dfrac{1}{9} \cdot  \dfrac{1}{{x}^{2} +  \frac{4}{9}} \: dx

 \displaystyle \rm \longrightarrow I = \dfrac{1}{9} \int \dfrac{1}{{x}^{2} +  \frac{4}{9}} \: dx

 \displaystyle \rm \longrightarrow I = \dfrac{1}{9} \int \dfrac{1}{{x}^{2} + ( \frac{2}{3})^{2} } \: dx

We know that:

 \displaystyle \rm \longrightarrow \int \dfrac{1}{{x}^{2} + {a}^{2} } \: dx = \dfrac{1}{a} \cdot \tan^{ - 1} \bigg ( \frac{x}{a} \bigg ) + C

So, the integral becomes:

 \displaystyle \rm \longrightarrow I = \dfrac{1}{9} \times  \dfrac{1}{ \frac{2}{3} } \times  \tan^{ - 1}  \bigg( \dfrac{x}{ \frac{2}{3} }  \bigg)  +C

 \displaystyle \rm \longrightarrow I = \dfrac{1}{9} \times  \dfrac{3}{2} \times  \tan^{ - 1}  \bigg( \dfrac{3x}{2}  \bigg)  +C

 \displaystyle \rm \longrightarrow I = \dfrac{1}{6} \tan^{ - 1}  \bigg( \dfrac{3x}{2}  \bigg)  +C

Therefore:

 \displaystyle \rm \longrightarrow \int \dfrac{1}{4 + 9 {x}^{2} } \: dx  = \dfrac{1}{6} \tan^{ - 1}  \bigg( \dfrac{3x}{2}  \bigg)  +C

★ Which is our required answer.

Learn More:

\boxed{\begin{array}{c|c}\bf f(x)&\bf\displaystyle\int\rm f(x)\:dx\\ \\ \frac{\qquad\qquad}{}&\frac{\qquad\qquad}{}\\ \rm k&\rm kx+C\\ \\ \rm sin(x)&\rm-cos(x)+C\\ \\ \rm cos(x)&\rm sin(x)+C\\ \\ \rm{sec}^{2}(x)&\rm tan(x)+C\\ \\ \rm{cosec}^{2}(x)&\rm-cot(x)+C\\ \\ \rm sec(x)\  tan(x)&\rm sec(x)+C\\ \\ \rm cosec(x)\ cot(x)&\rm-cosec(x)+C\\ \\ \rm tan(x)&\rm log(sec(x))+C\\ \\ \rm\dfrac{1}{x}&\rm log(x)+C\\ \\ \rm{e}^{x}&\rm{e}^{x}+C\\ \\ \rm x^{n},n\neq-1&\rm\dfrac{x^{n+1}}{n+1}+C\end{array}}

Similar questions