3root 2+4root2-5root3
Answers
Answer:
Secondary School Math 13 points
Rationalise 4 root 3 +5root2/4 root 3+3 root 2
Ask for details Follow Report by Anju2438 17.10.2017
Answers
Me · Beginner
Know the answer? Add it here!
pinquancaro Virtuoso
Answer:
The rationalization of \frac{4\sqrt{3}+5\sqrt{2}}{4\sqrt{3}+3\sqrt{2}} is \frac{9+4\sqrt{6}}{15}
Step-by-step explanation:
Given : 4 root 3 +5 root 2/4 root 3+3 root 2
To find : Rationalize the given expression?
Solution :
The given expression is \frac{4\sqrt{3}+5\sqrt{2}}{4\sqrt{3}+3\sqrt{2}}
Rationalizing the expression by multiplying and dividing denominator with opposite sign,
=\frac{4\sqrt{3}+5\sqrt{2}}{4\sqrt{3}+3\sqrt{2}}\times \frac{4\sqrt{3}-3\sqrt{2}}{4\sqrt{3}-3\sqrt{2}}
The denominator is multiplied by using the formula,
\bold{(a+b)(a-b)=a^{2}-b^{2}}
=\frac{(4\sqrt{3})^2-(4\sqrt{3})(3\sqrt2)+(5\sqrt{2})(4\sqrt{3})-(5\sqrt{2})(3\sqrt{2})}{(4\sqrt{3})^2-(3\sqrt{2})^2}
=\frac{48-12\sqrt{6}+20\sqrt{6}-30}{48-18}
=\frac{9+4\sqrt{6}}{15}
Therefore, The rationalization of \frac{4\sqrt{3}+5\sqrt{2}}{4\sqrt{3}+3\sqrt{2}} is \frac{9+4\sqrt{6}}{15}
Answer:
7√2-5√3 add me in brainlist