3sintheta + 5costheta = 5 , prove that 5sintheta - 3 costheta =+/- 3
Answers
Answered by
8
Squaring on both sides
3sinθ+5cosθ)²= 5²
(3sinθ)²+(5cosθ)²+2× 3sinθ 5cosθ= 25
[a+b= a²+b²+2ab]
9sin²θ+ 25cos²θ+30sinθcosθ= 25
9 (1-cos²θ) + 25(1-sin²θ)+30sinθcosθ=25
[sin²θ + cos²θ =1]
9-9cos²θ + 25-25sin²θ +30sinθcosθ=25
9+25 -(9cos²θ +25sin²θ -30sinθcosθ) =25
34 - (9cos²θ +25sin²θ -30sinθcosθ) =25
- (25sin²θ +9cos²θ-30sinθcosθ) =25-34
(25sin²θ+9cos²θ -30sinθcosθ) =9
(5sinθ - 3cosθ)²= 9
(5sinθ - 3cosθ)= √9
(5sinθ - 3cosθ)= ±3
L.H.S = R.H.S
Answered by
2
Please mark me as the brainliest tag.... please
Attachments:
Similar questions
Environmental Sciences,
7 months ago
Math,
7 months ago
Biology,
1 year ago
CBSE BOARD X,
1 year ago
Physics,
1 year ago