√3sinx=cosx then find 3cos²x+2cosx/3cosx+2
Answers
Answered by
7
Step-by-step explanation:
Simplification of the equation:
3cos2x−3sin2x−3–√2sinxcosx=0
3(cos2x−sin2x)−3–√(2sinxcosx)=0
[Trigonometric identities]
∵cos2x−sin2x=cos2x
2sinxcosx=sin2x
3(cos2x)−3–√(sin2x)=0
3(cos2x)=3–√sin2x
33–√=sin2xcos2x
3–√=tan2x
tan−1(3–√)=2x
(According to the property of inverse trigonometric functions)
tan−1(tanπ3)=2x
π3=2x
π6=x
It is the solution of this problem
Similar questions