Math, asked by dhawana19, 5 months ago

(3sqrt(2))/(sqrt(3) + sqrt(6)) + (4sqrt(3))/(sqrt(2) + sqrt(6)) + (sqrt(6))/(sqrt(2) + sqrt(3))​

Answers

Answered by hetu88
25

0 is the answer

go to above pic

Attachments:
Answered by pulakmath007
31

\displaystyle \sf  \frac{3 \sqrt{2} }{ \sqrt{3} +  \sqrt{6}  }  +  \frac{4 \sqrt{3} }{ \sqrt{2} +  \sqrt{6}  }  +  \frac{ \sqrt{6} }{ \sqrt{2} +  \sqrt{3}  }  =  \bf 2( \sqrt{18}  -  \sqrt{6})

Given :

The expression

\displaystyle \sf  \frac{3 \sqrt{2} }{ \sqrt{3} +  \sqrt{6}  }  +  \frac{4 \sqrt{3} }{ \sqrt{2} +  \sqrt{6}  }  +  \frac{ \sqrt{6} }{ \sqrt{2} +  \sqrt{3}  }

To find :

To simplify the expression

Solution :

Step 1 of 2 :

Write down the given expression

The given expression is

\displaystyle \sf  \frac{3 \sqrt{2} }{ \sqrt{3} +  \sqrt{6}  }  +  \frac{4 \sqrt{3} }{ \sqrt{2} +  \sqrt{6}  }  +  \frac{ \sqrt{6} }{ \sqrt{2} +  \sqrt{3}  }

Step 2 of 2 :

Simplify the expression

\displaystyle \sf  \frac{3 \sqrt{2} }{ \sqrt{3} +  \sqrt{6}  }  +  \frac{4 \sqrt{3} }{ \sqrt{2} +  \sqrt{6}  }  +  \frac{ \sqrt{6} }{ \sqrt{2} +  \sqrt{3}  }

\displaystyle \sf =   \frac{3 \sqrt{2} (\sqrt{3}  -   \sqrt{6})}{ (\sqrt{3} +  \sqrt{6}) (\sqrt{3}  -  \sqrt{6}) }  +  \frac{4 \sqrt{3} ( \sqrt{2}  -   \sqrt{6} )}{( \sqrt{2} +  \sqrt{6} )( \sqrt{2}  -   \sqrt{6} ) }  +  \frac{ \sqrt{6} (\sqrt{2}  -   \sqrt{3} ) }{ (\sqrt{2} +  \sqrt{3} )  (\sqrt{2}  -   \sqrt{3} )}

\displaystyle \sf =   \frac{3 \sqrt{2} (\sqrt{3}  -   \sqrt{6})}{ {( \sqrt{3} )}^{2}   -  {( \sqrt{6} )}^{2} }  +  \frac{4 \sqrt{3} ( \sqrt{2}  -   \sqrt{6} )}{{( \sqrt{2} )}^{2}   -  {( \sqrt{6} )}^{2} }  +  \frac{ \sqrt{6} (\sqrt{2}  -   \sqrt{3} ) }{ {( \sqrt{2} )}^{2}   -  {( \sqrt{3} )}^{2}}

\displaystyle \sf =   \frac{3 \sqrt{2} (\sqrt{3}  -   \sqrt{6})}{ 3 - 6 }  +  \frac{4 \sqrt{3} ( \sqrt{2}  -   \sqrt{6} )}{2 - 6 }  +  \frac{ \sqrt{6} (\sqrt{2}  -   \sqrt{3} ) }{2 - 3}

\displaystyle \sf =   \frac{3 \sqrt{2} (\sqrt{3}  -   \sqrt{6})}{  - 3}  +  \frac{4 \sqrt{3} ( \sqrt{2}  -   \sqrt{6} )}{ - 4 }  +  \frac{ \sqrt{6} (\sqrt{2}  -   \sqrt{3} ) }{ - 1}

\displaystyle \sf =    -  \sqrt{2} (\sqrt{3}  -   \sqrt{6})     -  \sqrt{3} ( \sqrt{2}  -   \sqrt{6} )   -  \sqrt{6} (\sqrt{2}  -   \sqrt{3} )

\displaystyle \sf =  - \sqrt{6}   +   \sqrt{12}  -  \sqrt{6}   +   \sqrt{18}  - \sqrt{12}   + \sqrt{18}

\displaystyle \sf{  = 2( \sqrt{18}  -  \sqrt{6})  }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. the value of (√5+√2)²

https://brainly.in/question/3299659

2. Simplify ( 8+√5)(8-√5).

https://brainly.in/question/17061574

Similar questions