Math, asked by vinny2, 1 year ago

3t+1/16-2t-3/7=t+3/8+3t-1/14


Undo: what to do

Answers

Answered by seelanezhil
12
3*t-(2*t)+1/16-(3/7)=t+3*t+3/8-(1/14)

3*t-(2*t)-t-(3*t)+1/16-(3/7)-(3/8)+1/14=0

3*t-2*t-t-3*t+1/16-3/7-3/8+1/14=0

-3*t-75/112=0

-3*t=75/112

t=75/112/(-3)

t=  -25/112
Answered by pinakimandal53
9
Solving for t

3t+ \frac{1}{16} -2t- \frac{3}{7} = t+ \frac{3}{8} +3t- \frac{1}{14}
3t-2t+ \frac{1}{16} - \frac{3}{7} = t+3t+ \frac{3}{8} - \frac{1}{14}
 \frac{1}{16} - \frac{3}{7} +3t-2t =  \frac{3}{8} - \frac{1}{14} +t+3t
- \frac{41}{112} +t =  \frac{17}{56} +4t
Transposing - \frac{41}{112} to RHS and 4t to LHS. 
t-4t =  \frac{17}{56} +  \frac{41}{112}
-3t =  \frac{75}{112}
 \frac{-3t}{1} =  \frac{75}{112}
I am going to use cross multiplication. 
112(-3t) = 1(75)
-336t = 75
Dividing both sides by -336. 
 \frac{-336t}{-336} =  \frac{75}{-336}
t = - \frac{25}{112}

Hope this may help you. 
Similar questions