Math, asked by sindrela123, 11 months ago

3tan^2theta - 4√3 tan theta + 3 = 0 find theta acute angle​

Answers

Answered by Anonymous
10

AnsWer :

\underline{\dag\:\textsf{According \: to \: given \: in question:}}

\normalsize\ : \implies\sf\ 3tan^2\theta - 4\sqrt{3} + 3 = 0

\scriptsize\sf{\: \: \: \: \: \:( \therefore\ \: \red{ Using \: middle \: term \: factorization:}) }

\normalsize\ : \implies\sf\ 3tan^2\theta - 3\sqrt{3} - \sqrt{3} + 3 = 0  \\ \\ \normalsize\ : \implies\sf\ 3tan\theta(tan\theta - \sqrt{3}) - \sqrt{3}(tan\theta - \sqrt{3}) = 0

\normalsize\ : \implies\sf\underbrace{(tan\theta - \sqrt{3})}_{\orange{case \: \: 1} } - \underbrace{(3tan\theta - \sqrt{3})}_{\green{case \: \: 2} } = 0

 \rule{100}2

\underline{\dag\:\textsf{Solving \: with \: case \: 1}}

\normalsize\ : \implies\sf\ tan\theta - \sqrt{3} = 0 \\ \\ \normalsize\ : \implies\sf\ tan\theta = \sqrt{3} \\ \\ \normalsize\ : \implies\sf\ tan\theta = tan60^{\circ}

\scriptsize\sf{\: \: \: \: \: \:( \therefore\ \: \red{tan60^{\circ} = \sqrt{3}}) }

\normalsize\ : \implies\sf\cancel{tan}  \theta = \cancel{tan} 60^{\circ} \\ \\ \normalsize\ : \implies{\boxed{\sf{\theta = 60^{\circ} }}}

\underline{\dag\:\textsf{ Solving \: with \: case \: 2}}

\normalsize\ : \implies\sf\ 3tan\theta - \sqrt{3} = 0

\normalsize\ : \implies\sf\ 3tan\theta = \sqrt{3}

\normalsize\ : \implies\sf\ tan\theta = \frac{\cancel{\sqrt{3}}}{\cancel{3}}

\normalsize\ : \implies\sf\ tan\theta = \frac{1}{\sqrt{3}} \\ \\ \normalsize\ : \implies\sf\ tan\theta = tan30^{\circ}

\scriptsize\sf{\: \: \: \: \: \:( \therefore\ \: \red{tan30^{\circ} = \frac{1}{\sqrt{3}}}) }

\normalsize\ : \implies\sf\cancel{tan} \theta = \cancel{tan} 60^{\circ} \\ \\ \normalsize\ : \implies{\boxed{\sf{ \theta = 60^{\circ} }}}

 \rule{100}2

\bullet The Value of \bf\theta is either \bf\ 60{^\circ} or \bf\ 30^{\circ} .

Answered by Anonymous
17

Given :

\sf3tan^2\theta - 4\sqrt{3}tan\theta + 3 = 0

────────────────────────

To find :

The value of theta

────────────────────────

Solution :

\begin{lgathered}\normalsize\  \implies\sf\ 3tan^2\theta - 3\sqrt{3} - \sqrt{3} + 3 = 0 \\ \\ \normalsize\ \implies\sf\ 3tan\theta(tan\theta - \sqrt{3}) - \sqrt{3}(\tan\theta - \sqrt{3}) = 0\end{lgathered}

\normalsize\implies \sf\ (tan\theta-\sqrt{3})(3tan\theta-\sqrt{3})= 0

────────────────────────

Now we have two cases

\mathbb\pink{Case\:1}

 \begin{lgathered}\normalsize\ \implies\sf\ tan\theta - \sqrt{3} = 0 \\ \\ \normalsize\ \implies\sf\ tan\theta = \sqrt{3} \\ \\ \normalsize\ \implies\sf\ tan\theta = tan60^{\circ}\end{lgathered}

\begin{lgathered}\normalsize\ \implies\sf{tan} \theta = {tan} 60^{\circ} \\ \\ \normalsize\  \implies{\boxed{\bf{\blue{\theta = 60^{\circ} }}}}\end{lgathered}

\mathbb\pink{Case\:2}

\normalsize\ \implies\sf\ 3tan\theta - \sqrt{3} = 0

\normalsize\ \implies\sf\ 3tan\theta = \sqrt{3}

\normalsize\  \implies\sf\ tan\theta = \dfrac{{\sqrt{3}}}{{3}}

\begin{lgathered}\normalsize\ \implies\sf\ tan\theta = \frac{1}{\sqrt{3}} \\ \\ \normalsize\ \implies\sf\ tan\theta = tan30^{\circ}\end{lgathered}

\begin{lgathered}\normalsize\ \implies\sf{tan} \theta = {tan} 60^{\circ} \\ \\ \normalsize\ \implies{\boxed{\bf{\blue{ \theta = 60^{\circ} }}}}\end{lgathered}

────────────────────────

Answer :

The Value of theta is 60° or 30°

────────────────────────

Note :

\sf{\: \: \: \: \: \: We\: know \:{tan30^{\circ} = \dfrac{1}{\sqrt{3}}} }

\sf{\: \: \: \: \: \: We\: know \:{tan60^{\circ} = \sqrt{3}} }

Similar questions