Math, asked by Rajnish1710, 1 year ago

√3tanA=3sinA. then find sin²A-cos²A

Answers

Answered by HoneyPalta1
28
tanA/sinA=3/√3
(sinA/cosA)(1/sinA)=√3
1/cosA=√3
cosA=1/√3

sin^2A-cos^2A
1-cos^2A-cos^2A
1-2cos^2A
1-2(1/√3)^2
1-2(1/3)
1-2/3
1/3

Rajnish1710: how you solve 5th step
HoneyPalta1: when we do (1/√3)^2 hole square we got 1/3
Rajnish1710: thnku
HoneyPalta1: welcome
HoneyPalta1: pls make it brainliest answer
vishal747: where gone 3
vishal747: 2nd step mai 3 kha gaya ???
Answered by harendrachoubay
11

\sin^2 A-\cos^2 A=\dfrac{1}{3}

Step-by-step explanation:

We have,

\sqrt{3}\tan A=3\sin A

To find, \sin^2 A-\cos^2 A=?

\sqrt{3}\dfrac{\sin A}{\cos A} =3\sin A

[∵ \tan A=\dfrac{\sin A}{\cos A}]

\dfrac{1}{\cos A} =\sqrt{3}

\cos A=\dfrac{1}{\sqrt{3}}

\sin^2 A-\cos^2 A

=1-\cos^2 A-\cos^2 A

=1-2\cos^2 A

Put \cos A=\dfrac{1}{\sqrt{3}}, we get

=1-2(\dfrac{1}{\sqrt{3}})^2

=1-2\times \dfrac{1}{3} =1-\dfrac{2}{3}

=\dfrac{3-2}{3}=\dfrac{1}{3}

Hence, \sin^2 A-\cos^2 A=\dfrac{1}{3}.

Similar questions