Math, asked by Rajas82005, 3 months ago

3tanø=secø find cotø​

Answers

Answered by prince5132
21

GIVEN :-

  • 3tan∅ = sec∅.

TO FIND :-1

  • The value of cot∅.

SOLUTION :-

Now we have to convert all the terms in the form of sin∅ and cos∅.

So as we know the following trigonometric identities :

sec∅ = 1/cos∅ or cos∅ = 1/sec∅

cot∅ = cos∅/sin∅ or cot∅ = 1/tan∅

tan∅ = sin∅/cos∅

cos∅ = (1 - sin²)

Now substitute the trigonometric identities in the given equation,

 \implies \displaystyle \sf \: 3  \tan( \theta)  =  \sec( \theta)  \\

 \implies \displaystyle \sf \: 3 \times  \frac{ \sin( \theta) }{ \cos( \theta) }  =  \frac{1}{ \cos( \theta) }  \\

On cancelling cos∅ with cos∅ we get,

 \\ \implies \displaystyle \sf \:3 \sin( \theta)  = 1 \\

\implies \displaystyle \sf \: \sin( \theta)  =  \frac{1}{3} \:  \dashrightarrow(1) \\

Now as we know the identity :- cos∅ = √(1 - sin²∅).

\implies \displaystyle \sf \: \cot( \theta)  =  \frac{ \cos( \theta) }{ \sin( \theta) }  \\

\implies \displaystyle \sf \: \cot( \theta)  =  \frac{ \sqrt{1 -  \sin ^{2} ( \theta) } }{  \bigg(\dfrac{1}{3} \bigg) }  \\

\implies \displaystyle \sf \: \cot( \theta)  = \frac{ \sqrt{1 -  \bigg( \dfrac{1}{3} \bigg) ^{2}  } }{ \bigg(  \dfrac{1}{3} \bigg)}  \\

\implies \displaystyle \sf \: \cot( \theta)  = \frac{ \sqrt{1 -  \dfrac{1}{9}  } }{ \bigg(  \dfrac{1}{3} \bigg)}  \\

\implies \displaystyle \sf \: \cot( \theta)  = \frac{ \sqrt{ \dfrac{8}{9}  } }{ \bigg(  \dfrac{1}{3} \bigg)}  \\

\implies \displaystyle \sf \: \cot( \theta)  = \frac{ \dfrac{2}{3}  \sqrt{ 2  } }{ \bigg(  \dfrac{1}{3} \bigg)}  \\

\implies \displaystyle \underline{ \boxed{ \sf \: \cot( \theta)  =2 \sqrt{2} }}

Answered by mathdude500
5

Given ;-

  • 3 tanø = secø

To Find :-

  • cotø

Formula Used ;-

 \longmapsto \boxed{ \blue{ \bf \: tanx \:  =  \: \dfrac{sinx}{cosx} }}

 \longmapsto \boxed{ \blue{ \bf \: secx \:  =  \: \dfrac{1}{cosx} }}

 \longmapsto \boxed{ \blue{ \bf \:  {cosec}^{2} x -  {cot}^{2}  x = 1}}

\large\underline\purple{\bold{Solution :-  }}

Given that

\rm :\implies\:3 \: tan \phi \:  = sec\phi \:

\rm :\implies\:3 \: \dfrac{sin\phi \: }{ \cancel{cos\phi \:} }  = \dfrac{1}{ \cancel{cos\phi \:} }

\rm :\implies\:sin\phi \:  = \dfrac{1}{3}

\rm :\implies \:  \boxed{ \green {\bf\:cosec\phi \:  = 3} }-  - (1)

Now,

We know that,

\rm :\implies\: {cosec}^{2} \phi \:  -  {cot}^{2} \phi \:  = 1

\rm :\implies\: {(3)}^{2}  -  {cot}^{2} \phi \:  = 1

\rm :\implies\: {cot}^{2} \phi \:  = 9  - 1

\rm :\implies\: {cot}^{2} \phi \:  = 8

\rm :\implies\:cot\phi \:  =  \sqrt{8}

\rm :\implies \:  \boxed{ \green{ \bf\:cot\phi \:  = 2 \sqrt{2} }}

Additional Information:-

Additional Information:- Relationship between sides and T ratios

  • sin θ = Opposite Side/Hypotenuse
  • cos θ = Adjacent Side/Hypotenuse
  • tan θ = Opposite Side/Adjacent Side
  • sec θ = Hypotenuse/Adjacent Side
  • cosec θ = Hypotenuse/Opposite Side
  • cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

  • cosec θ = 1/sin θ
  • sec θ = 1/cos θ
  • cot θ = 1/tan θ
  • sin θ = 1/cosec θ
  • cos θ = 1/sec θ
  • tan θ = 1/cot θ

Co-function Identities

  • sin (90°−x) = cos x
  • cos (90°−x) = sin x
  • tan (90°−x) = cot x
  • cot (90°−x) = tan x
  • sec (90°−x) = cosec x
  • cosec (90°−x) = sec x

Fundamental Trigonometric Identities

  • sin²θ + cos²θ = 1
  • sec²θ - tan²θ = 1
  • cosec²θ - cot²θ = 1
Similar questions