Math, asked by gautamjoshi2, 4 months ago

(3x - 1) (3x + 1)
a) 6x2 -1 0
b)6x²+1
c)9x²‐1​

Answers

Answered by manishkumarsihag8016
5

Step-by-step explanation:

I think it will helpful u please follow me please

my brother as well as sister who are watching please give me a Hart

Attachments:
Answered by EthicalElite
9

Question :

(3x - 1) (3x + 1)

Solution :

(3x - 1) (3x + 1)

By using identity :

 \underline{\boxed{\bf{(a-b)(a+b) = a^{2} - b^{2}}}}

Here,

  • a = 3x
  • b = 1

 \sf : \implies (3x - 1) (3x + 1) = (3x)^{2} - (1)^{2}

 \sf : \implies (3x - 1) (3x + 1) = 9x^{2} - 1

Hence, right answer is 9x² ‐ 1.

Some Algebraic identities :

\boxed{\begin{minipage}{7 cm}\boxed{\bigstar\:\:\textbf{\textsf{Algebric\: Identities}}\:\bigstar}\\\\1)\bf\:(a+b)^{2} = a^{2} + 2ab + b^{2}\\\\2)\bf\: (a-b)^{2} = a^{2} - 2ab + b^{2}\\\\3)\bf\: a^{2} - b^{2} = (a+b)(a-b)\\\\4)\bf\: (a+b)^{2} = (a-b)^{2} + 4ab\\\\5)\bf\: (a-b)^{2} = (a+b)^{2} - 4ab\\\\6)\bf\: (a+b)^{3} = a^{3} + 3ab(a+b) + b^{3}\\\\7)\bf\:(a-b)^{3} = a^{3} - 3ab(a-b) + b^{3}\\\\8)\bf\: a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2})\\\\\end{minipage}}

Similar questions