Math, asked by javedkhan11481, 8 months ago

3x-1/5-x/7=3. Solve the equation ( find the value of x) and also check it .

Answers

Answered by sonal1305
5

{\huge{\underline{\sf {\orange{Question :}}}}}

[ \frac{3x \:  -  \: 1}{5}  -  \frac{x}{7}  = 3 ] \:\: Solve the equation (find x) and verify it.

{\huge{\underline{\sf {\pink{Answer :}}}}}

\boxed{ x \: = \: 7 }

{\huge{\underline{\sf {\green{Explanation :}}}}}

 \frac{3x \:  -  \: 1}{5}  -  \frac{x}{7}  = 3

Taking LCM of 7 and 5 = 35,

 \frac{7(3x - 1)  \: -  \: 5(x)}{35}  = 3

Transposing 35 to the other side,

(21x - 7) - 5x = 35 \times 3

21x \:  -  \: 7 \:  -  \: 5x \:  = 105

Transposing 7 to the other side,

16x \:  = 105 \:  +  \: 7

16x \:  =  \: 112

Transposing 16,

x \:  =  \:  \frac{112}{16}

x \:  =  \: 7

 \:  \:

 \:  \:  \:

Verification :

Putting x = 7 in  \frac{(3x \:  -  \: 1) }{5}  -  \frac{x}{7}

LHS

\frac{(3 \times 7 \:  - 1) }{5}  -  \frac{7}{7}

 \frac{21 \:  -  \: 1}{5}  - 1

 \frac{20}{5}  - 1

4  \:  -  \: 1

3

= RHS

So, LHS = RHS (Proved)

Answered by amankumaraman11
0

 \large \bf \to3x -  \frac{1}{5}  -  \frac{x}{7}  = 3 \\  \boxed{ \rm{}taking \:  \: LCM \:  \: of \:  \: denominators} \\   \tt \leadsto\frac{105x - 7 -5 x}{35}  = 3 \\  \boxed{  \small\rm{}performing \:  \: calculation \:  \: on \:  \: numerator \:  \:  \& \:  \: transposing \:  \: 35 \:  \: to \:  \: RHS} \\  \leadsto \tt100x - 7 = 105 \\  \boxed{ \rm{transposing \:  \: 7 \:  \: to \:  \: RHS} }\\  \leadsto \tt100x = 105 + 7 \\ \boxed{ \rm  performing \:  \: calculation \:  \: in \:  \: RHS}\\ \leadsto \tt100x = 112 \\  \boxed{ \rm dividing \:  \: both \:  \: sides \:  \: by \:  \: 100} \\\leadsto \tt  \frac{100x}{100}  =  \frac{112}{100}  \\\leadsto \tt x =  \red{1.12}

Similar questions