Math, asked by saward1, 6 hours ago

∫((3x-1)/(x^2+1)) dx

Answers

Answered by senboni123456
3

Step-by-step explanation:

We have,

 \displaystyle \int \dfrac{3x - 1}{ {x}^{2} + 1 }  \: dx

 \displaystyle =  \int \dfrac{3x}{ {x}^{2} + 1 }  \: dx  -  \int \dfrac{1}{ {x}^{2} + 1 } \: dx \\

 \displaystyle = \dfrac{3}{2}   \int \dfrac{2x}{ {x}^{2} + 1 }  \: dx  -  \int \dfrac{1}{ {x}^{2} + 1 } \: dx \\

 \displaystyle = \dfrac{3}{2}   \ln \left|  {x}^{2} + 1  \right|   -  \tan^{ - 1} (x) + c \\

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\rm \:  \frac{3x - 1}{ {x}^{2} + 1 }  \: dx

can be rewritten as

\rm \:  =  \: \displaystyle\int\rm \:  \frac{3x}{ {x}^{2}  + 1}  \: dx \:  -  \: \displaystyle\int\rm \:  \frac{1}{ {x}^{2}  + 1} \: dx

\rm \:  =  \: \dfrac{3}{2} \displaystyle\int\rm \:  \frac{2x}{ {x}^{2}  + 1}  \: dx \:  -  \:   {tan}^{ - 1}x   + c

We know,

\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\int\rm \:  \frac{f'(x)}{f(x)} \: dx \:  =  \: log |f(x)| + c \: }}}

Here,

\red{\rm :\longmapsto\:\boxed{\tt{ ( {x}^{2}  + 1)' = 2x \: }}}

So, using this identity, we get

\rm \:  =  \: \dfrac{3}{2}log | {x}^{2}  + 1|  -  {tan}^{ - 1}x + c

Hence,

\boxed{\tt{ \displaystyle\int\rm \:  \frac{3x - 1}{ {x}^{2} + 1 } dx=  \: \dfrac{3}{2}log | {x}^{2}  + 1|  -  {tan}^{ - 1}x + c \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions