3x^2-243 by using the completing the square method
Answers
Answer:
2
x
2
−3x−2
2
=0
2
x
2
−4x+x−2
2
=0
2
x(x−2
2
)+1(x−2
2
)=0
(x−2
2
)(
2
x+1)=0
∴x=2
2
,−
2
1
2
x
2
−3x−2
2
=0
2
x
2
−4x+x−2
2
=0
2
x(x−2
2
)+1(x−2
2
)=0
(x−2
2
)(
2
x+1)=0
∴x=2
2
,−
2
1
2
x
2
−3x−2
2
=0
2
x
2
−4x+x−2
2
=0
2
x(x−2
2
)+1(x−2
2
)=0
(x−2
2
)(
2
x+1)=0
∴x=2
2
,−
2
1
2
x
2
−3x−2
2
=0
2
x
2
−4x+x−2
2
=0
2
x(x−2
2
)+1(x−2
2
)=0
(x−2
2
)(
2
x+1)=0
∴x=2
2
,−
2
1
2
x
2
−3x−2
2
=0
2
x
2
−4x+x−2
2
=0
2
x(x−2
2
)+1(x−2
2
)=0
(x−2
2
)(
2
x+1)=0
∴x=2
2
,−
2
1
2
x
2
−3x−2
2
=0
2
x
2
−4x+x−2
2
=0
2
x(x−2
2
)+1(x−2
2
)=0
(x−2
2
)(
2
x+1)=0
∴x=2
2
,−
2
1
2
x
2
−3x−2
2
=0
2
x
2
−4x+x−2
2
=0
2
x(x−2
2
)+1(x−2
2
)=0
(x−2
2
)(
2
x+1)=0
∴x=2
2
,−
2
1
2
x
2
−3x−2
2
=0
2
x
2
−4x+x−2
2
=0
2
x(x−2
2
)+1(x−2
2
)=0
(x−2
2
)(
2
x+1)=0
∴x=2
2
,−
2
1
2
x
2
−3x−2
2
=0
2
x
2
−4x+x−2
2
=0
2
x(x−2
2
)+1(x−2
2
)=0
(x−2
2
)(
2
x+1)=0
∴x=2
2
,−
2
1
2
x
2
−3x−2
2
=0
2
x
2
−4x+x−2
2
=0
2
x(x−2
2
)+1(x−2
2
)=0
(x−2
2
)(
2
x+1)=0
∴x=2
2
,−
2
1
Step-by-step explanation: