Math, asked by Anonymous, 1 year ago

3x^2+27y^2+z^2-18xy+6√3yz-2√3zx​

Answers

Answered by rishu6845
43

Answer:

plzzzz give me brainliest ans

Attachments:
Answered by hukam0685
5

\bf 3 {x}^{2}  + 27 {y}^{2}  +  {z}^{2}  - 18xy + 6 \sqrt{3} yz - 2 \sqrt{3} zx  \\ \bf = ( { -  \sqrt{3} x + 3 \sqrt{3}y + z) }^{2} \\

Given:

  • 3 {x}^{2}  + 27 {y}^{2}  +  {z}^{2}  - 18xy + 6 \sqrt{3} yz - 2 \sqrt{3} zx \\

To find:

  • Factorise the polynomial.

Solution:

Identity to be used:

\bf ( {a + b + c)}^{2}  =  {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2ab + 2bc + 2ac \\

Step 1:

Rewrite the polynomial, so that identity can be applied.

3 {x}^{2}  + 27 {y}^{2}  +  {z}^{2}  - 18xy + 6 \sqrt{3} yz - 2 \sqrt{3} zx  = \\(  -  { \sqrt{3}x) }^{2}  + ( {3 \sqrt{3}y) }^{2}  + ( {z}^{2} ) + 2(  - \sqrt{3} x)(3 \sqrt{3}  y) +2(3 \sqrt{3}y)(z) + 2( -  \sqrt{3}x)(z)   \\

Negative sign should be placed before coefficient of x; because in negative terms -18xy and -2√3zx, x is common.

Step 2:

Compare the terms from identity.

It is clearly seen now

a =  -  \sqrt{3} x \\

b = 3 \sqrt{3} y \\

and

c = z \\

So,

3 {x}^{2}  + 27 {y}^{2}  +  {z}^{2}  - 18xy + 6 \sqrt{3} yz - 2 \sqrt{3} zx  \\= ( { -  \sqrt{3} x + 3 \sqrt{3}y + z) }^{2} \\

Thus,

\bf 3 {x}^{2}  + 27 {y}^{2}  +  {z}^{2}  - 18xy + 6 \sqrt{3} yz - 2 \sqrt{3} zx \\ \bf= ( { -  \sqrt{3} x + 3 \sqrt{3}y + z) }^{2} \\

Learn more:

1) factorise 4x^2+9y^2+z^2-12xy+6yz-4xz

https://brainly.in/question/9903987

2) Expand the following, using suitable identity (√2x +2y -√3z) ^2

https://brainly.in/question/2687321

Similar questions